The effect of porosity on the strength of previous concrete

  • Viet Tran Bao

    Construction Engineering Faculty, University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam.
    Research and Application Center for Technology in Civil Engineering, University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam
Email: viettb@utc.edu.vn
Keywords: previous concrete, strength, porosity

Abstract

A novel micromechanical models are developped to predict the relationship between the porosity and the strength of the previous concrete material. Based on the three phase composite sphere assemblage model with coated pore-concrete inclusions embedded in a fictitious effective medium then the strain, stress mean fields and the effective properties of material are constructed. Illustrative applications are reported by comparing the theoretical predictions with the experimental to show pertinence of model.

References

[1]. B.Huang, H. Wu, X. Shu, E. G. Burdette, Laboratory evaluation of permeability and strength of polymer-modified pervious concrete, Construction and Building Materials, 24 (2010) 818-823. https://doi.org/10.1016/j.conbuildmat.2009.10.025
[2]. G.A. Francfort, J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J Mech Phys Solids, 46 (1998)1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9
[3]. X. Chen, S. Wu, J. Zhou, Influence of porosity on compressive and tensile strength of cement mortar, Construction and Building Materials, 40 (2013) 869-874. https://doi.org/10.1016/j.conbuildmat.2012.11.072
[4]. X. Du, L. Jin, G.Ma, Macroscopic effective mechanical properties of porous dry concrete, Cement and Concrete Research, 44 (2013) 87-96. https://doi.org/10.1016/j.cemconres.2012.10.012
[5]. D. Li, Z. Li, G. Lv, G.Zhang, Y.Yin, A predictive model of the effective tensile and compressive strengths of concrete considering porosity and pore size, Construction and Building Materials, 170 (2018) 520-526. https://doi.org/10.1016/j.conbuildmat.2018.03.028
[6]. R.M. Christensen, Mechanics of composite materials, Wiley, New York, 1979.
[7]. B. V. Tran, D. C. Pham, T. H. G. Nguyen, Equivalent-inclusion approach and effective medium approximations for elastic moduli of compound-inclusion composites, Archive of Applied Mechanics, 85 (2015) 1983–1995. https://doi.org/10.1007/s00419-015-1031-6
[8]. V. Marcadon, E. Herve, A. Zaoui, Micromechanical modeling of packing and size effects in particulate composites, International Journal of Solids and Structures, 44 (2007) 8213-8228. https://doi.org/10.1016/j.ijsolstr.2007.06.008
[9]. K. Miled, K. Sab, R. Le Roy, Effective elastic properties of porous materials: Homogenization schemes vs experimental data, Mechanics Research Communications, 38 (2011) 131-135. https://doi.org/10.1016/j.mechrescom.2011.01.009
[10]. ACI-318 Committee: ACI 318-11: Building Code Requirements for Structural Concrete and Commentary, 2011.
[11]. R. Zhong, K. Wille, Compression response of normal and high strength pervious concrete, Construction and Building Materials, 109 (2016) 177-187. https://doi.org/10.1016/j.conbuildmat.2016.01.051

Downloads

Download data is not yet available.
Received
17/05/2019
Revised
11/06/2019
Accepted
17/06/2019
Published
16/09/2019
Type
Research Article
How to Cite
Trần Bảo, V. (1568566800). The effect of porosity on the strength of previous concrete . Transport and Communications Science Journal, 70(1), 53-62. https://doi.org/10.25073/tcsj.70.1.43
Abstract Views
104
Total Galley Views
168