Nghiên cứu ứng xử ống tròn có gân dọc chịu nén dọc trục
Email:
hieuld@haui.edu.vn
Từ khóa:
năng lượng hấp thụ (EA), ống lượn sóng, khả năng hấp thụ va đập; năng lượng riêng hấp thụ (SEA).
Tóm tắt
Bài báo này nghiên cứu ứng xử và tính năng tin cậy chịu nén của các ống nhôm tròn có và không có gân dọc. Các gân dọc càng nhiều thì năng lượng riêng hấp thụ càng lớn. Lực nén lớn nhất (peak load) của ống có các gân lớn hơn so với ống không có gân dọc. Phương pháp TOPSIS được áp dụng để chỉ ra cấu trúc thích hợp dành cho thiết bị hấp thụ năng lượng va đập của xe hơi.Tài liệu tham khảo
[1]. Johnson W, Reid SR, Metallic energy dissipating systems, Applied Mechanics Reviews 31 (1978) 277-88.
[2]. Jones N, Wierzbicki T, Structural Crashworthiness and Faillure, Elsevier Applied Science, 1992.
[3]. Sharman PW, Structural Crashworthiness, N. Jones and T. Wierzbicki (Editors), Butterworth & Company (Publishers) Ltd, London, 1983, 443pp, Illustrated. £40.00, The Aeronautical Journal 88 (1984), 450-450.
[4]. Coppa AP, On the mechanism of buckling of circular cylindrical shells under longitudinal impact, TIS Report R60SD494 General Electric Co, PA, USA, 1966.
[5]. Budiansky B, Dynamic buckling of elastic structures: criteria and estimates, in Dynamic Stability of Structures, Proc Int Conf, North-western University, Evanston Illinois, USA Pergamon Press, Oxford, 1966.
[6]. Tran T, Baroutaji A, Crashworthiness optimal design of multi-cell triangular tubes under axial and oblique impact loading, Engineering Failure Analysis 93 (2018), 241-256. https://doi.org/10.1016/j.engfailanal.2018.07.003.
[7]. Pirmohammad S, Esmaeili-Marzdashti S, Multi-objective crashworthiness optimization of square and octagonal bitubal structures including different hole shapes, Thin-Walled Structures 139 (2019), 126-38. https://doi.org/10.1016/j.tws.2019.03.004.
[8]. Pirmohammad S, Nikkhah H, Crashworthiness investigation of bitubal columns reinforced with several inside ribs under axial and oblique impact loads, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 232 (2018), 367-383.
[9]. Sadighi A, Eyvazian A, Asgari M, Hamouda AM, A novel axially half corrugated thin-walled tube for energy absorption under Axial loading, Thin-Walled Structures 145 (2019), 106-418. https://doi.org/10.1016/j.tws.2019.106418.
[10]. Azimi MB, Asgari M, Energy absorption characteristics and a meta-model of miniature frusta under axial impact, International Journal of Crashworthiness 21 (2016), 222-230. https://doi.org/10.1080/13588265.2016.1164445.
[11]. Singace AA, El-Sobky H, Behaviour of axially crushed corrugated tubes, International Journal of Mechanical Sciences 39 (1997), 249-268. https://doi.org/10.1016/S0020-7403(96)00022-7.
[12]. Abdul-Latif A, Baleh R, Aboura Z, Some improvements on the energy absorbed in axial plastic collapse of hollow cylinders, International Journal of Solids and Structures 43 (2006), 1543-1560. https://doi.org/10.1016/j.ijsolstr.2005.04.029
[13]. Mathew M. Multi-criteria decision-making method https://mathewmanoj.wordpress.com/multi-criteria-decision-making/,truy cập ngày 2 tháng 3 năm 2019.
[14]. Mamalis AG, Manolakos DE, Viegelahn GL, Vaxevanidis NM, Johnson W, The inextensional collapse of grooved thin-walled cylinders of PVC under axial loading, International Journal of Impact Engineering 4 (1986), 41-56. https://doi.org/10.1016/0734-743X(86)90026-6.
[15]. Niknejad A, Abedi MM, Liaghat GH, Zamani Nejad M, Prediction of the mean folding force during the axial compression in foam-filled grooved tubes by theoretical analysis, Materials & Design 37 (2012), 144-151. https://doi.org/10.1016/j.matdes.2011.12.032.
[16]. Güden M, Kavi H, Quasi-static axial compression behavior of constraint hexagonal and square-packed empty and aluminum foam-filled aluminum multi-tubes, Thin-Walled Structures 44 (2006), 739-750. https://doi.org/10.1016/j.tws.2006.07.003.
[17]. Eyvazian A, Tran TN, Hamouda AM, Experimental and theoretical studies on axially crushed corrugated metal tubes, International Journal of Non-Linear Mechanics 101 (2018), 86-94. https://doi.org/10.1016/j.ijnonlinmec.2018.02.009.
[2]. Jones N, Wierzbicki T, Structural Crashworthiness and Faillure, Elsevier Applied Science, 1992.
[3]. Sharman PW, Structural Crashworthiness, N. Jones and T. Wierzbicki (Editors), Butterworth & Company (Publishers) Ltd, London, 1983, 443pp, Illustrated. £40.00, The Aeronautical Journal 88 (1984), 450-450.
[4]. Coppa AP, On the mechanism of buckling of circular cylindrical shells under longitudinal impact, TIS Report R60SD494 General Electric Co, PA, USA, 1966.
[5]. Budiansky B, Dynamic buckling of elastic structures: criteria and estimates, in Dynamic Stability of Structures, Proc Int Conf, North-western University, Evanston Illinois, USA Pergamon Press, Oxford, 1966.
[6]. Tran T, Baroutaji A, Crashworthiness optimal design of multi-cell triangular tubes under axial and oblique impact loading, Engineering Failure Analysis 93 (2018), 241-256. https://doi.org/10.1016/j.engfailanal.2018.07.003.
[7]. Pirmohammad S, Esmaeili-Marzdashti S, Multi-objective crashworthiness optimization of square and octagonal bitubal structures including different hole shapes, Thin-Walled Structures 139 (2019), 126-38. https://doi.org/10.1016/j.tws.2019.03.004.
[8]. Pirmohammad S, Nikkhah H, Crashworthiness investigation of bitubal columns reinforced with several inside ribs under axial and oblique impact loads, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 232 (2018), 367-383.
[9]. Sadighi A, Eyvazian A, Asgari M, Hamouda AM, A novel axially half corrugated thin-walled tube for energy absorption under Axial loading, Thin-Walled Structures 145 (2019), 106-418. https://doi.org/10.1016/j.tws.2019.106418.
[10]. Azimi MB, Asgari M, Energy absorption characteristics and a meta-model of miniature frusta under axial impact, International Journal of Crashworthiness 21 (2016), 222-230. https://doi.org/10.1080/13588265.2016.1164445.
[11]. Singace AA, El-Sobky H, Behaviour of axially crushed corrugated tubes, International Journal of Mechanical Sciences 39 (1997), 249-268. https://doi.org/10.1016/S0020-7403(96)00022-7.
[12]. Abdul-Latif A, Baleh R, Aboura Z, Some improvements on the energy absorbed in axial plastic collapse of hollow cylinders, International Journal of Solids and Structures 43 (2006), 1543-1560. https://doi.org/10.1016/j.ijsolstr.2005.04.029
[13]. Mathew M. Multi-criteria decision-making method https://mathewmanoj.wordpress.com/multi-criteria-decision-making/,truy cập ngày 2 tháng 3 năm 2019.
[14]. Mamalis AG, Manolakos DE, Viegelahn GL, Vaxevanidis NM, Johnson W, The inextensional collapse of grooved thin-walled cylinders of PVC under axial loading, International Journal of Impact Engineering 4 (1986), 41-56. https://doi.org/10.1016/0734-743X(86)90026-6.
[15]. Niknejad A, Abedi MM, Liaghat GH, Zamani Nejad M, Prediction of the mean folding force during the axial compression in foam-filled grooved tubes by theoretical analysis, Materials & Design 37 (2012), 144-151. https://doi.org/10.1016/j.matdes.2011.12.032.
[16]. Güden M, Kavi H, Quasi-static axial compression behavior of constraint hexagonal and square-packed empty and aluminum foam-filled aluminum multi-tubes, Thin-Walled Structures 44 (2006), 739-750. https://doi.org/10.1016/j.tws.2006.07.003.
[17]. Eyvazian A, Tran TN, Hamouda AM, Experimental and theoretical studies on axially crushed corrugated metal tubes, International Journal of Non-Linear Mechanics 101 (2018), 86-94. https://doi.org/10.1016/j.ijnonlinmec.2018.02.009.
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
31/10/2019
Nhận bài sửa
18/12/2019
Chấp nhận đăng
18/12/2019
Xuất bản
16/01/2020
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Nhan T., T., Arameh, E., & DucHieu, L. (1579107600). Nghiên cứu ứng xử ống tròn có gân dọc chịu nén dọc trục. Tạp Chí Khoa Học Giao Thông Vận Tải, 70(5), 407-417. https://doi.org/10.25073/tcsj.70.5.5
Số lần xem tóm tắt
150
Số lần xem bài báo
209