Áp dụng phương pháp trường pha để dự báo ứng xử chịu kéo khi uốn của bê tông xi măng rỗng

  • Nguyễn Thị Hồng

    Trường Đại học Giao thông vận tải, Số 3 Cầu Giấy, Hà Nội, Việt Nam
  • Nguyễn Hoàng Quân

    Trường Đại học Giao thông vận tải, Số 3 Cầu Giấy, Hà Nội, Việt Nam
  • Trần Bảo Việt

    Trường Đại học Giao thông vận tải, Số 3 Cầu Giấy, Hà Nội, Việt Nam
  • Trần Anh Tuấn

    Trường Đại học Giao thông vận tải, Số 3 Cầu Giấy, Hà Nội, Việt Nam
Email: quannh_ktxd@utc.edu.vn
Từ khóa: bê tông xi măng rỗng, ứng xử chịu kéo khi uốn, trường pha, hạt cốt liệu hình elíp

Tóm tắt

Bê tông xi măng rỗng là vật liệu sinh thái có nhiều ưu điểm như kiểm soát được lưu lượng nước bề mặt, giảm ô nhiễm mỗi trường, tái tạo nguồn nước ngầm, lọc các chất độc cho nước. Các nghiên cứu về ứng xử chịu kéo uốn của vật liệu này còn hạn chế so với các nghiên cứu về ứng xử chịu nén, về độ rỗng, tính thấm. Bài báo nhằm mục đích đề xuất mô hình mô phỏng số mới xác định ứng xử chịu kéo khi uốn của bê tông xi măng rỗng ở cấp độ vật liệu. Ứng xử phá hoại của bê tông xi măng rỗng được mô phỏng bằng phương pháp phần tử hữu hạn dựa trên lý thuyết trường pha. Phương pháp này cho phép mô phỏng hệ thống vết nứt phức tạp như vết nứt phân nhánh, các vết nứt nhỏ gặp nhau tạo thành vết nứt lớn. Cấu trúc của bê tông xi măng rỗng được xây dựng thông qua các thuật toán mới về xây dựng lưới. Các hạt cốt liệu được giả thiết có hình dạng elíp. Kết quả mô phỏng cho thấy sự tương đồng với kết quả thí nghiệm về mối quan hệ lực – độ mở rộng vết nứt, dạng phá hoại. Bên cạnh đó, kết quả mô hình số cũng cho thấy ảnh hưởng của hình dạng hạt cốt liệu tới ứng xử chịu kéo khi uốn của bê tông xi măng rỗng

Tài liệu tham khảo

[1]. C. Gaedicke, A. Marines, F. Miankodila, A method for comparing cores and cast cylinders in virgin and recycled aggregate pervious concrete, Construction and Building Materials, 52 (2014) 494–503. https://doi.org/10.1016/j.conbuildmat.2013.11.043
[2]. M. Bhutta, K. Tsuruta, J. Mirza, Evaluation of high-performance porous concrete properties, Construction and Building Materials, 31 (2012) 67–73. https://doi.org/10.1016/j.conbuildmat.2011.12.024
[3]. C. Lian, Y. Zhuge, S. Beecham, The relationship between porosity and strength for porous concrete, Construction and Building Materials, 25 (2011) 4294–4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005
[4]. C. Q. Lian, Z. G. Yan, S. Beecham, Modelling pervious concrete under compression loading -a discrete element approach, Trans Tech Publ, 168 - 170 (2011) 1590-1600. https:// doi.org/10.4028/www.scientific.net/AMR.168-170.1590
[5]. R. Pieralisi, S. Cavalaro, A. Aguado, Discrete element modelling of mechanical behaviour of pervious concrete, Cement and Concrete Composites, 119 (2021) 104005. https://doi.org/10.1016/j.cemconcomp.2021.104005
[6]. C. Xie, L. Yuan, M. Zhao, Y. Jia, Study on failure mechanism of porous concrete based on acoustic emisson and discrete element method, Construction and Building Materials, 235 (2020) 117409. https://doi.org/10.1016/j.conbuildmat.2019.117409
[7]. L. Akand, M. Yang, Z. Gao, Characterization of pervious concrete through image based micromechanical modeling, Construction and Building Materials, 114 (2016) 547–555. https://doi.org/10.1016/j.conbuildmat.2016.04.005
[8]. Nguyen, H.Q., Tran, B.V. and Vu, T.S., Numerical approach to predict the flexural damage behavior of pervious concrete, Case Studies in Construction Materials, 16 (2022) e00946. https://doi.org/10.1016/j.cscm.2022.e00946
[9]. P. Wriggers, S. Moftah, Mesoscale models for concrete: homogenisation and damage behaviour, in: Finite Elements in Analysis and Design, 42 (2006) 623–636. https://doi.org/10.1016/j.finel.2005.11.008
[10]. G. A. Francfort, J. J. Marigo, Revisiting brittle fracture as an energy minimization problem, Journal of Mechanics and Physics of Solids, 46 (1998) 1319–1342. https://doi.org/ 10.1016/S0022-5096(98)00034-9
[11]. C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Computer Methods in Applied Mechanics and Engineering, 199 (2010) 2765–2778. https://doi.org/10.1016/j.cma.2010.04.011
[12]. T. T. Nguyen, J. Yvonnet, Q. Zhu, M. Bornert, C. Chateau, A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Engineering Fracture Mechanics, 139 (2015) 18–39. https://doi.org/10.1016/j.engfracmech.2015.03.045
[13]. N. A. Brake, H. Allahdadi, F. Adam, Flexural strength and fracture size effects of pervious concrete, Construction and Building Materials, 113 (2016) 536–543. https://doi.org/ 10.1016/j.conbuildmat.2016.03.045
[14]. A. A. Griffith, The phenomena of rupture and flow in solids, Philosophical transactions of the royal society of London, Series A, 221 (1921) 163-198. https://doi.org/10.1098/rsta.1921.0006
[15]. B. Bourdin., G. A. Francfort, J. J. Marigo, The Variational Approach to Fracture, Journal of Elasticity, 91 (2008) 5–148. https://doi.org/10.1007/s10659-007-9107-3
[16]. K. Pham, H. Amor, J.J. Marigo, C. Maurini, Gradient Damage Models and Their Use to Approximate Brittle Fracture. International Journal of Damage Mechanics, 20 (2011) 618–652. https://doi.org/10.1177/1056789510386852
[17]. T. T. Nguyen, J. Yvonnet, M. Bornert, C. Chateau, K. Sab, R. Romani, R. Le Roy, On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. International Journal of Fracture, 197 (2016) 213–226. https://doi.org/10.1007/s10704-016-0082-1
[18]. H. Amor, J. J. Marigo, C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments, Journal of Mechanics and Physics of Solids, 57 (2009) 1209–1229. https://doi.org/10.1016/j.jmps.2009.04.011
[19]. C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations, International Journal for Numerical Methods in Engineering, 83 (2010) 1273–1311. https://doi.org/10.1002/nme.2861
[20]. X. Xie, T. Zhang, Y. Yang, Z. Lin, J. Wei, Q. Yu, Maximum paste coating thickness without voids clogging of pervious concrete and its relationship to the rheological properties of cement paste. Construction and Building Materials, 168 (2018) 732–746. https://doi.org/10.1016/j.conbuildmat.2018.02.128
[21]. X. Xie, T. Zhang, C. Wang, Y. Yang, A. Bogush, E. Khayrulina, Z. Huang, J. Wei, Q. Yu, Mixture proportion design of pervious concrete based on the relationships between fundamental properties and skeleton structures, Cement and Concrete Composites, 113 (2020) 103693. https://doi.org/10.1016/j.cemconcomp.2020.103693
[22]. M. S. Sumanasooriya, N. Neithalath, Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction, Cement and Concrete Composites, 33 (2011) 778–787. https://doi.org/10.1016/j.cemconcomp.2011.06.002
[23]. P. Chindaprasirt, S. Hatanaka, T. Chareerat, N. Mishima, Y. Yuasa, Cement paste characteristics and porous concrete properties, Construction and Building Material, 22 (2006) 894–901. https://doi.org/10.1016/j.conbuildmat.2006.12.007
[24]. O. Deo, N. Neithalath, Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features, Materials Science and Engineering A, Special Topic Section: Local and Near Surface Structure from Diffraction, 528 (2010) 402–412. https://doi.org/10.1016/j.msea.2010.09.024
[25]. F. Etayo, L. Gonzalez-Vega, N. del Rio, A new approach to characterizing the relative position of two ellipses depending on one parameter, Computer Aided Geometric Design, 23 (2006) 324–50. https://doi.org/10.1016/j.cagd.2006.01.002
[26]. G. B. Hughes, M. Chraibi, Calculating ellipse overlap areas, Computing and Visualization Science, 15 (2012) 291–301. https://doi.org/10.1007/s00791-013-0214-3
[27]. C. M. López, I. Carol, A. Aguado, Meso-structural study of concrete fracture using interface elements. I: numerical model and tensile behavior, Materials and Structures, 41 (2008) 583–599. https://doi.org/10.1617/s11527-007-9314-1
[28]. F. Gatuingt, L. Snozzi, J. F. Molinari, Numerical determination of the tensile response and the dissipated fracture energy of concrete: role of the mesostructure and influence of the loading rate: numerical tensile response and fracture energy of concrete, International Journal for Numerical and Analytical Methods in Geomechanics, 37 (2013) 3112–3130. https://doi.org/10.1002/nag.218
[29]. C. Miehe, L. M. Schänzel, H. Ulmer, Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Computer Methods in Applied Mechanics and Engineering, 294 (2015) 449–485. https://doi.org/10.1016/j.cma.2014.11.016
[30]. T. T. Nguyen, J. Réthoré, M. C. Baietto, Phase field modelling of anisotropic crack propagation, European Journal of Mechanics – A/Solids, 65 (2017) 279–288. https://doi.org/10.1016/j.euromechsol.2017.05.002
[31]. X. F. Wang, Z. J. Yang, J. R. Yates, A. P. Jivkov, C. Zhang, Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores, Construction and Building Material, 75 (2015) 35–45. https://doi.org/10.1016/j.conbuildmat.2014.09.069
[32]. A. Chandrappa, K. P. Biligiri, Investigation on Flexural Strength and Stiffness of Pervious Concrete for Pavement Applications, Advances in Civil Engineering Materials, 7 (2018) 20170015. https://doi.org/10.1520/ACEM20170015

Tải xuống

Chưa có dữ liệu thống kê
Nhận bài
27/08/2022
Nhận bài sửa
09/09/2022
Chấp nhận đăng
13/10/2022
Xuất bản
15/10/2022
Chuyên mục
Công trình khoa học