Simulation tension test of two-dimensional puckered hexagonal materials sheet

  • Quy Le Minh

    Division of Mechanics of Materials and Structures, School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam
  • Tu Nguyen Huu

    Faculty of Fundamental Science, Military Academy of Logistics, Hanoi, Viet Nam
  • Lien Do Thi Kim

    Faculty of Mechanical and Civil Engineering, Vietnam-Hungary Industrial University, Ha Noi, Viet Nam
  • Trang Nguyen Van

    Faculty of Mechanical Engineering, Thai Nguyen University of Technology, Thai Nguyen, Vietnam
Email: nguyenhuutu160382@gmail.com
Keywords: two-dimensional materials, mechanical properties, Stillinger-Weber

Abstract

Two-dimensional materials have many special properties such as good thermal conductivity, good electrical conductivity. They have potential applications in many fields such as medicine, energy, electronics etc. Simple tensile tests were simulated by atomic-scale finite element method with Stillinger-Weber potentials. Among many two-dimensional binary materials, 6 two-dimensional puckered (p-) hexagonal materials are here investigated, namely p-SiS, p-SiSe, p-GeS, p-GeSe, p-CSe, and p-CTe, to study their mechanical properties. Results show that two-dimensional Young’s modulus, Poisson’s ratio, two-dimensional tensile fracture stress, and tensile fracture strain appear in the range from 10.6 through 89.1 N/m, from -0.11 to 0.42, from 2.3 to 9.4 N/m, from 20% to 43%, respectively. These materials exhibit high anisotropy with a large difference in the mechanical properties along the armchair and zigzag directions. Young’s modulus in the zigzag direction is about three times larger than that in the armchair one. Results are useful for the design and application of these materials.

References

[1]. A.K. Geim, Graphene: status and prospects. Science, 324 (2009) 1530-1534. https://www.science.org/doi/10.1126/science.1158877
[2]. A. Pakdel, Z. Chunyi, B. Yoshio, G. Dmitri, Low-dimensional boron nitride nanomaterials, Materials Today, 15 (2012) 256–265. https://doi.org/10.1016/S1369-7021(12)70116-5.
[3]. P. Tsipas, S. Kassavetis, D. Tsoutsou, E. Xenogiannopoulou, E. Golias, S. A. Giamini, C. Grazianetti, D. Chiappe, A. Molle, M. Fanciulli, A. Dimoulas, Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111), Applied Physics Letters, 103 (2013) 251605. https://doi.org/10.1063/1.4851239
[4]. V. Mansurov, T. V. Malin, Yu. G. Galitsyn, K. S. Zhuravlev, Graphene-like AlN layer formation on (111) Si surface by ammonia molecular beam epitaxy, Journal of Crystal Growth, 428 (2015) 93-97. https://doi.org/10.1016/j.jcrysgro.2015.07.030
[5]. T. Malin, V. G. Mansurov, Y.Galitsyn, K. S. Zhuravlev, 2D AlN crystal phase formation on (0001) Al2O3 surface by ammonia MBE, Physica status solidi c, 12 (2015) 443-446. https://doi.org/10.1002/pssc.201400168
[6]. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, G. L. Lay, Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene, Applied Physics Letters, 96 (2010) 183102-183102. https://doi.org/10.1063/1.3419932
[7]. P.D. Padova C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, C. Carbone, D. Topwal, B. Oliveieri, A. Kara, H. Oughaddou, B. Aufray, G. L. Lay, Evidence of graphene-like electronic signature in silicene nanoribbons, Applied Physics Letters, 96 (2010) 261905-261908. https://doi.org/10.1063/1.3459143
[8]. L. Meng, Yeliang Wang, Lizhi Zhang, Shixuan Du, Buckled silicene formation on Ir (111), Nano letters, 13 (2013) 685-690. https://doi.org/10.1021/nl304347w
[9]. Z. Zhu, D. Tomanek, Semiconducting Layered Blue Phosphorus: A Computational Study, Physical review letters, 112 (2014) 176802-176807. https://doi.org/10.1103/PhysRevLett.112.176802
]10].K. Chinnathambi, A. Chakrabarti, M. Ezawa, Direct Band Gaps in Group IV-VI Monolayer Materials: Binary Counterparts of Phosphorene. Physical Review B, 93 (2015) 125428-125441. https://doi.org/10.1103/PhysRevB.93.125428
[11]. L. Miaomiao, Taojian Fan, Yun Zhou, Han Zhang, Lin Mei, 2D Black Phosphorus–Based Biomedical Applications, Advanced Functional Materials, 29 (2019) 1808306. https://doi.org/10.1002/adfm.201808306
[12]. H. Jiang, T. S. Zhao, Yuxun Ren, Zhang Ruihan, Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries, Science Bulletin, 62 (2017) 572-578. https://doi.org/10.1016/j.scib.2017.03.026
[13]. A. Sarkar, E. Stratakis, Recent Advances in 2D Metal Monochalcogenides, Advanced Science, 7 (2020) 2001655. https://doi.org/10.1002/advs.202001655
[14]. B. Liu, ying-sheng Huang, Hanqing Jiang, Shaojian Qu, The atomic-scale finite element method. Computer methods in applied mechanics and engineering, 193 (2004) 1849-1864. https://doi.org/10.1016/j.cma.2003.12.037
[15]. W. Youqi, C. Zhang, E. Zhou, C. Sun, J. Hinkley, T. S. Gates, J. Su, Atomistic finite elements applicable to solid polymers, Computational materials science, 36 (2006) 292-302. https://doi.org/10.1016/j.commatsci.2005.03.016
[16]. J. Wackerfu, Molecular mechanics in the context of the finite element method, International Journal for Numerical Methods in Engineering, 77 (2009) 969-997. https://doi.org/10.1002/nme.2442
[17]. L. Nasdala, A. Kempe, R. Rolfes, The molecular dynamic finite element method (MDFEM), Computers Materials and Continua, 19 (2010) 57-104. https://10.3970/cmc.2010.019.057
[18]. F.H. Stillinger, T.A. Weber, Computer simulation of local order in condensed phases of silicon, Physical review B, 31(1985) 5262-5271. https://doi.org/10.1103/PhysRevB.31.5262
[19]. J.Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent systems, Physical Review B, 39 (1989) 5566-5568. https://doi.org/10.1103/PhysRevB.39.5566
[20]. Nguyen Danh Truong, Minh Quy Le, Tham Lam Bui, Hai Le Bui, Atomistic simulation of free transverse vibration of graphene, hexagonal SiC, and BN nanosheets. Acta Mechanica Sinica, 33 (2016) 132-147. https://10.1007/s10409-016-0613-z
[21]. J.-W. Jiang, Y.-P. Zhou, Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals, InTech, 2017.
[22]. M.-Q. Le, Mode-I stress intensity factor in single layer graphene sheets, Computational Materials Science, 118 (2016) 251-258. https://doi.org/10.1016/j.commatsci.2016.03.027
[23]. F. Hao, X. Chen, First-principles study of the defected phosphorene under tensile strain, Journal of Applied Physics, 120 (2016) 1063-1073 . https://doi.org/10.1063/1.4966167

Downloads

Download data is not yet available.
Received
28/01/2022
Revised
04/04/2022
Accepted
08/06/2022
Published
15/06/2022
Type
Research Article
How to Cite
Lê Minh, Q., Nguyễn Hữu, T., Đỗ Thị Kim, L., & Nguyễn Văn, T. (1655226000). Simulation tension test of two-dimensional puckered hexagonal materials sheet . Transport and Communications Science Journal, 73(5), 514-526. https://doi.org/10.47869/tcsj.73.5.6
Abstract Views
256
Total Galley Views
190