Analysis of perturbes frictional contact problems
Email:
nlthien@sti.vast.vn
Từ khóa:
Perturbe, frictional contact, Fuzzy Logic Controller, Homotopy Perturbation and Projection
Tóm tắt
Generally, friction/perturbation compensation is an important issue in high-precision motion control applications. In particular, when the system under control undergoes low-speed or reversal motions, the friction force and external perturbations will degrade motion accuracy. In this paper, we study analysis of perturbed frictional contact problems. Its shows how homotopy perturbation techniques and projection can be integrated in control-based approach to reanalyze the perturbed frictional contact problems. Thus, the perturbed non linear problem is decomposed into perturbed linear problems dedicated to each component in contact. Each solution of perturbed linear problems is approximated. A numerical application is performed to verify the efficiency and the robustness of the proposed method. The proposed method has been developed to be compatible within a context of multiple sampling (such as parametric analysis or design of experiments). The proposal relies on a control based method currently used in automation domain. A Fuzzy Logic Controller (FLC) is designed to link the normal gaps identified between the bodies and the normal contact pressures applied at the interface. Finally, a design of experiments is proposed to quantify the effects of input perturbations on output mechanical dataTài liệu tham khảo
[1]. Z. Bingul, O. Karahan, A fuzzy logic controller tuned with pso for 2 dof robot trajectory control, Expert Systems with Applications, 38 (2011) 1017-1031. https://doi.org/10.1016/j.eswa.2010.07.131
[2]. A. B. Chaudhary, K. J. Bathe, A solution method for static and dynamic analysis of three-dimensional contact problems with friction, Computers and Structures, 246 (1986) 855-873.
https://doi.org/10.1016/0045-7949(86)90294-4
[3]. M. T. Hayajneh, S. M. Radaideh, I. A. Smadi, Fuzzy logic controller for overhead cranes, Engineering Computations, 23 (2006) 84-98. http://dx.doi.org/10.1108/02644400610638989
[4]. S. Kohn-Rich, H. Flashner, Robust fuzzy logic control of mechanical systems, Fuzzy Sets and Systems, 338 (2001) 353-370. https://doi.org/10.1016/S0016-0032(00)00093-4
[5]. A. E. Mabrouk, A. Cheriet, M. Feliachi, Fuzzy logic control of electrodynamic levitation devices coupled to dynamic finite volume method analysis, Applied Mathematical Modelling, 37 (2013) 5951-5961. https://doi.org/10.1016/j.apm.2012.11.025
[6]. H. Tanyildizi, Fuzzy logic model for prediction of mechanical properties of lightweight concrete exposed to high temperature, Materials & Design, 30 (2009) 2205-2210.
https://doi.org/10.1016/j.matdes.2008.08.030
[7]. R. S. Khabbaz, B. D. Manshadi, A. Abedian, R. Mahmudi, A simplified fuzzy logic approach for materials selection in mechanical engineering design, Materials and Design, 30 (2009) 687-697.
https://doi.org/10.1016/j.matdes.2008.05.026
[8]. J. Yvonnet, H. Zahrouni, M. Potier-Ferry, A model reduction method for the post-buckling analysis of cellular microstructures, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 265-280. https://doi.org/10.1016/j.cma.2007.07.026
[9]. O. Fazio, S. Nacivet, J.J. Sinou, Reduction strategy for a brake system with local frictional non-linearities - application for the prediction of unstable vibration modes, Applied Acoustics, 91 (2015) 12-24. https://doi.org/10.1016/j.apacoust.2014.11.005
[10]. A. Giacoma, D. Dureisseix, A. Gravouil, M. Rochette, Toward an optimal a priori reduced basis strategy for frictional contact problems with latin solver, Computer Methods in Applied Mechanics and Engineering, 283 (2015) 1357-1381. https://doi.org/10.1016/j.cma.2014.09.005
[11]. J.H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178 (1999) 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
[12]. A. Meziane, L. Baillet, B. Laulagnet, Experimental and numerical investigation of friction-induced vibration of a beam-on-beam in contact with friction, Applied Acoustics, 71 (2010) 843-853. https://doi.org/10.1016/j.apacoust.2010.04.012
[13]. A. Klarbring, A mathematical programming approach to three-dimensional contact problems with friction, Computer Methods in Applied Mechanics and Engineering, 58 (1988) 1185-1198.
https://doi.org/10.1016/0045-7949(88)90162-9
[14]. B. Lallemand, A. Cherki, T. Tison, P. Level, Fuzzy modal finite element analysis of structures with imprecise material properties, Journal of Sound and Vibration, 220 (1999) 353-365.
https://doi.org/10.1006/jsvi.1998.1952
[2]. A. B. Chaudhary, K. J. Bathe, A solution method for static and dynamic analysis of three-dimensional contact problems with friction, Computers and Structures, 246 (1986) 855-873.
https://doi.org/10.1016/0045-7949(86)90294-4
[3]. M. T. Hayajneh, S. M. Radaideh, I. A. Smadi, Fuzzy logic controller for overhead cranes, Engineering Computations, 23 (2006) 84-98. http://dx.doi.org/10.1108/02644400610638989
[4]. S. Kohn-Rich, H. Flashner, Robust fuzzy logic control of mechanical systems, Fuzzy Sets and Systems, 338 (2001) 353-370. https://doi.org/10.1016/S0016-0032(00)00093-4
[5]. A. E. Mabrouk, A. Cheriet, M. Feliachi, Fuzzy logic control of electrodynamic levitation devices coupled to dynamic finite volume method analysis, Applied Mathematical Modelling, 37 (2013) 5951-5961. https://doi.org/10.1016/j.apm.2012.11.025
[6]. H. Tanyildizi, Fuzzy logic model for prediction of mechanical properties of lightweight concrete exposed to high temperature, Materials & Design, 30 (2009) 2205-2210.
https://doi.org/10.1016/j.matdes.2008.08.030
[7]. R. S. Khabbaz, B. D. Manshadi, A. Abedian, R. Mahmudi, A simplified fuzzy logic approach for materials selection in mechanical engineering design, Materials and Design, 30 (2009) 687-697.
https://doi.org/10.1016/j.matdes.2008.05.026
[8]. J. Yvonnet, H. Zahrouni, M. Potier-Ferry, A model reduction method for the post-buckling analysis of cellular microstructures, Computer Methods in Applied Mechanics and Engineering, 197 (2007) 265-280. https://doi.org/10.1016/j.cma.2007.07.026
[9]. O. Fazio, S. Nacivet, J.J. Sinou, Reduction strategy for a brake system with local frictional non-linearities - application for the prediction of unstable vibration modes, Applied Acoustics, 91 (2015) 12-24. https://doi.org/10.1016/j.apacoust.2014.11.005
[10]. A. Giacoma, D. Dureisseix, A. Gravouil, M. Rochette, Toward an optimal a priori reduced basis strategy for frictional contact problems with latin solver, Computer Methods in Applied Mechanics and Engineering, 283 (2015) 1357-1381. https://doi.org/10.1016/j.cma.2014.09.005
[11]. J.H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178 (1999) 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
[12]. A. Meziane, L. Baillet, B. Laulagnet, Experimental and numerical investigation of friction-induced vibration of a beam-on-beam in contact with friction, Applied Acoustics, 71 (2010) 843-853. https://doi.org/10.1016/j.apacoust.2010.04.012
[13]. A. Klarbring, A mathematical programming approach to three-dimensional contact problems with friction, Computer Methods in Applied Mechanics and Engineering, 58 (1988) 1185-1198.
https://doi.org/10.1016/0045-7949(88)90162-9
[14]. B. Lallemand, A. Cherki, T. Tison, P. Level, Fuzzy modal finite element analysis of structures with imprecise material properties, Journal of Sound and Vibration, 220 (1999) 353-365.
https://doi.org/10.1006/jsvi.1998.1952
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
30/10/2021
Nhận bài sửa
28/12/2021
Chấp nhận đăng
05/01/2022
Xuất bản
15/01/2022
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Nguyen Tien, T., Do Hai, Q., Pham Ba Viet, A., & Nguyen Luong, T. (1642179600). Analysis of perturbes frictional contact problems. Tạp Chí Khoa Học Giao Thông Vận Tải, 73(1), 61-74. https://doi.org/10.47869/tcsj.73.1.6
Số lần xem tóm tắt
169
Số lần xem bài báo
474