Nghiên cứu dự báo sức chịu tải tới hạn của cấu kiện cột ống thép nhồi bê tông có tiết diện hình chữ nhật bằng mạng nơ ron nhân tạo

  • Lý Hải Bằng

    Trường Đại học Công nghệ Giao thông Vận tải, Số 54 Triều Khúc, Thanh Xuân, Hà Nội, Việt Nam
  • Nguyễn Thùy Anh

    Trường Đại học Công nghệ Giao thông Vận tải, Số 54 Triều Khúc, Thanh Xuân, Hà Nội, Việt Nam
Email: banglh@utt.edu.vn
Từ khóa: Cột CFST mặt cắt chữ nhật, mạng nơ ron nhân tạo (ANN), tải trọng dọc trục, sức chịu tải tới hạn

Tóm tắt

Kết cấu ống thép nhồi bê tông (CFST) có nhiều lợi thế so với kết cấu thông thường làm bằng thép hoặc bê tông cốt thép nên hiện nay đang được sử dụng rộng rãi trong lĩnh vực xây dựng công trình. Khả năng chịu lực dọc trục (Pu) của CFST là một trong những tính chất cơ học quan trọng nhất và phụ thuộc vào nhiều yếu tố như thuộc tính của vật liệu, kích thước hình học mặt cắt. Trong nghiên cứu này, mô hình mạng Nơ-Ron lan truyền ngược (BPNN) với việc sử dụng thuật toán Levenberg - Marquardt được sử dụng để dự đoán sức chịu tải tới hạn (Pu) của cột CFST hình chữ nhật. Với 99 dữ liệu thử nghiệm từ các công trình đã công bố, 69 số liệu đã được chọn để huấn luyện và 30 số liệu được sử dụng để kiểm chứng mô hình BPNN. Các thông số chính được nghiên cứu trong bài viết gồm chiều cao, chiều rộng mặt cắt, độ dày của cột thép, chiều dài cột, cường độ của thép, cường độ bê tông đã được đề cập để dự đoán khả năng chịu lực tới hạn của cột CFST. Kết quả cho thấy mô hình ANN dự báo rất tốt với độ chính xác cao và sai số thấp (hệ số tương quan R = 0.99)

Tài liệu tham khảo

[1] M. Javed, N.H. Ramli Sulong, N. Khan, S. Kashif, Finite element analysis of the flexural behavior of square CFST beams at ambient and elevated temperature, in: Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures. ASCCS 2018, Editorial Universitat Politècnica de València, 2018, pp. 843–850.
[2] Z. Tian, Y. Liu, L. Jiang, W. Zhu, Y. Ma, A review on application of composite truss bridges composed of hollow structural section members, Journal of Traffic and Transportation Engineering (English Edition), 6 (2019) 94–108. https://doi.org/10.1016/j.jtte.2018.12.001
[3] D.M. Lue, J.-L. Liu, T. Yen, Experimental study on rectangular CFT columns with high-strength concrete, Journal of Constructional Steel Research, 63 (2007) 37–44. https://doi.org/10.1016/j.jcsr.2006.03.007
[4] L.-H. Han, Tests on stub columns of concrete-filled RHS sections, Journal of Constructional Steel Research, 58 (2002) 353–372. https://doi.org/10.1016/S0143-974X(01)00059-1
[5] J. Zeghiche, K. Chaoui, An experimental behaviour of concrete-filled steel tubular columns, Journal of Constructional Steel Research, 61 (2005) 53–66. https://doi.org/10.1016/j.jcsr.2004.06.006
[6] L.-H. Han, Y.-F. Yang, Influence of concrete compaction on the behavior of concrete filled steel tubes with rectangular sections, Advances in Structural Engineering, 4 (2001) 93–100. https://doi.org/10.1260/1369433011502381
[7] X. Wang, Y. Qi, Y. Sun, Z. Xie, W. Liu, Compressive behavior of composite concrete columns with encased FRP confined concrete cores, Sensors, 19 (2019) 1792. https://doi.org/10.3390/s19081792
[8] Z. Tao, Z.-B. Wang, Q. Yu, Finite element modelling of concrete-filled steel stub columns under axial compression, Journal of Constructional Steel Research, 89 (2013) 121–131. https://doi.org/10.1016/j.jcsr.2013.07.001
[9] D. Liu, W.-M. Gho, Axial load behaviour of high-strength rectangular concrete-filled steel tubular stub columns, Thin-Walled Structures, 43 (2005) 1131–1142. https://doi.org/10.1016/j.tws.2005.03.007
[10] D. Liu, Tests on high-strength rectangular concrete-filled steel hollow section stub columns, Journal of Constructional Steel Research, 61 (2005) 902–911. https://doi.org/10.1016/j.jcsr.2005.01.001
[11] D. Liu, W.-M. Gho, J. Yuan, Ultimate capacity of high-strength rectangular concrete-filled steel hollow section stub columns, Journal of Constructional Steel Research, 59 (2003) 1499–1515. https://doi.org/10.1016/S0143-974X(03)00106-8
[12] Eurocode 4, Design of composite steel and concrete structures. Part 1.1, General rules and rules for buildings, European Committee for Standardization, British Standards Institution, London, UK, 2004.
[13] AISC, Load and resistance factor design (LRFD) specification for structural steel buildings, American Institute of Steel Construction, Chicago, USA, 2005.
[14] A.C.I. Committee, Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05), in: American Concrete Institute, 2005.
[15] A.C.I. Committee, Building code requirements for structural concrete (ACI 318-08) and commentary, in: American Concrete Institute, 2008.
[16] X.B. Ma, S.M. Zhang, Comparison of design methods of load-carrying capacity for circular concrete-filled steel tube beam columns in typical codes worldwide, Journal of Harbin Institute of Technology, 39 (2007) 536–541.
[17] H.-B. Ly, L.M. Le, H.T. Duong, T.C. Nguyen, T.A. Pham, T.-T. Le, V.M. Le, L. Nguyen-Ngoc, B.T. Pham, Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections, Applied Sciences. 9 (2019) 2258. https://www.mdpi.com/2076-3417/9/11/2258
[18] H.-B. Ly, B.T. Pham, D.V. Dao, V.M. Le, L.M. Le, T.-T. Le, Improvement of ANFIS Model for Prediction of Compressive Strength of Manufactured Sand Concrete, Applied Sciences, 9 (2019) 3841. https://www.mdpi.com/2076-3417/9/18/3841
[19] D.V. Dao, H. Adeli, H.-B. Ly, L.M. Le, V.M. Le, T.-T. Le, B.T. Pham, A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation, Sustainability, 12 (2020) 830. https://doi.org/10.3390/su12030830
[20] R.Q. Bridge, Concrete filled steel tubular columns / by R.Q. Bridge., School of Civil Engineering, University of Sydney, Sydney, Australia, 1976. https://trove.nla.gov.au/version/44129332
[21] Y. Du, Z. Chen, M.-X. Xiong, Experimental behavior and design method of rectangular concrete-filled tubular columns using Q460 high-strength steel, Construction and Building Materials, 125 (2016) 856–872. https://doi.org/10.1016/j.conbuildmat.2016.08.057
[22] Y. Du, Z. Chen, Y. Yu, Behavior of rectangular concrete-filled high-strength steel tubular columns with different aspect ratio, Thin-Walled Structures, 109 (2016) 304–318. https://doi.org/10.1016/j.tws.2016.10.005
[23] S. Ghannam, Y.A. Jawad, Y. Hunaiti, Failure of lightweight aggregate concrete-filled steel tubular columns, Steel and Composite Structures, 4 (2004) 1–8. https://doi.org/10.12989/scs.2004.4.1.001
[24] L.-H. Han, Tests on stub columns of concrete-filled RHS sections, Journal of Constructional Steel Research, 58 (2002) 353–372. https://doi.org/10.1016/S0143-974X(01)00059-1.
[25] L.-H. Han, Y.-F. Yang, Analysis of thin-walled steel RHS columns filled with concrete under long-term sustained loads, Thin-Walled Structures. 41 (2003) 849–870. https://doi.org/10.1016/S0143-974X(01)00059-1
[26] L.-H. Han, G.-H. Yao, Influence of concrete compaction on the strength of concrete-filled steel RHS columns, Journal of Constructional Steel Research, 59 (2003) 751–767. https://doi.org/10.1016/S0143-974X(02)00076-7
[27] C.Y. Lin, Axial Capacity of Concrete Infilled Cold-formed Steel Columns, in: Ninth International Specialty Conference on Cold-Formed Steel Structures, St. Louis, Missouri, U.S.A, 1988: pp. 443–457.
[28] Schneider Stephen P., Axially Loaded Concrete-Filled Steel Tubes, Journal of Structural Engineering, 124 (1998) 1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
[29] H. Shakir-Khalil, M. Mouli, Further Tests on Concrete-Filled Rectangular Hollow-Section Columns, The Structural Engineer, 68 (1990) 405–413.
[30] H. Shakir-Khalil, J. Zeghiche, Experimental Behaviour of Concrete-Filled Rolled Rectangular Hollow-Section Columns, The Structural Engineer, 67 (1989) 346–353.
[31] H.-B. Ly, E. Monteiro, T.-T. Le, V.M. Le, M. Dal, G. Regnier, B.T. Pham, Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees, Materials, 12 (2019) 1544. https://doi.org/10.3390/ma12091544
[32] H.-B. Ly, C. Desceliers, L.M. Le, T.-T. Le, B.T. Pham, L. Nguyen-Ngoc, V.T. Doan, M. Le, Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials, Materials, 12 (2019) 1828. https://doi.org/10.3390/ma12111828
[33] Y. Du, Z. Chen, C. Zhang, C. Xiaochun, Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks, Frontiers of Computer Science, 11 (2017) 863–873. https://doi.org/10.1007/s11704-016-5113-6

Tải xuống

Chưa có dữ liệu thống kê
Nhận bài
13/02/2020
Nhận bài sửa
28/02/2020
Chấp nhận đăng
28/02/2020
Xuất bản
29/02/2020
Chuyên mục
Công trình khoa học