Thực nghiệm xác định ảnh hưởng của áp suất đến lượng phun và sự phát triển của tia phun nhiên liệu diesel
Email:
thinquynh@utc.edu.vn
Từ khóa:
hệ thống nhiên liệu diesel, phun áp suất cao, kim phun điện-thủy lực, tia phun
Tóm tắt
Vấn đề giảm phát thải và tăng hiệu suất được quan tâm rộng rãi nhằm đáp ứng được các tiêu chuẩn khí xả ngày càng ngặt nghèo với động cơ diesel. Trong các giải pháp đang được nghiên cứu, áp dụng thì tăng áp suất phun nhiên liệu là một giải pháp có triển vọng được áp dụng trong thực tế. Trong nghiên cứu này, ảnh hưởng của kết cấu và áp suất phun nhiên liệu tới lượng phun cũng như ảnh hưởng của áp suất tới sự phát triển của tia nhiên liệu được trình bày. Các kết quả chỉ ra rằng, áp suất phun nhiên liệu đạt tới 300 MPa khi áp dụng giải pháp thiết kế lại kết hợp với sự tăng cường thuộc tính của vật liệu chế tạo kim phun. Bên cạnh đó, các kết quả nhận được cũng thể hiện rằng, góc nón chùm tia có xu hướng giảm khi tăng áp suất phun nhiên liệu. Do ảnh hưởng của áp suất và sai số hình học của các lỗ kim phun mà lượng nhiên liệu và bề rộng của các tia là không giống nhau. Ngoài ra, áp suất càng tăng thì càng làm cho góc nón chùm tia giảm xuống, tia phun dài hơn và nhanh chóng đạt tới trạng thái ổn địnhTài liệu tham khảo
[1]. M. Williams, R. Minjares, A technical summary of Euro 6/VI vehicle emission standards, International Council on Clean Transportation, (2016).
[2]. A. Gómez, P. Fernández-Yáñez, J.A. Soriano, L. Sánchez-Rodríguez, C. Mata, R. García-Contreras, O. Armas, M.D. Cárdenas, Comparison of real driving emissions from Euro VI buses with diesel and compressed natural gas fuels, Fuel, 289 (2021). https://doi.org/10.1016/j.fuel.2020.119836
[3]. O. Fernie, T. Megaritis, L. Ganippa, E. Al Tingas, Numerical Analysis of Zero-Carbon HCCI Engine Fuelled with Steam Diluted H2/H2O2 Blends, SSRN Electronic Journal, 326 (2022). https://doi.org/10.2139/ssrn.4100930
[4]. A. P. Singh, V. Kumar, A. K. Agarwal, Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes, Appl Energy, 278 (2020). https://doi.org/10.1016/j.apenergy.2020.115644
[5]. A. Turkcan, M. D. Altinkurt, G. Coskun, M. Canakci, Numerical and experimental investigations of the effects of the second injection timing and alcohol-gasoline fuel blends on combustion and emissions of an HCCI-DI engine, Fuel, 219 (2018) 50–61. https://doi.org/10.1016/j.fuel.2018.01.061
[6]. I. D. Dimitrova, T. Megaritis, L. C. Ganippa, E. Al Tingas, Computational analysis of an HCCI engine fuelled with hydrogen/hydrogen peroxide blends, Int J Hydrogen Energy, 47 (2022) 10083–10096. https://doi.org/10.1016/j.ijhydene.2022.01.093
[7]. G. Boccardo, F. Millo, A. Piano, L. Arnone, S. Manelli, S. Fagg, P. Gatti, O. E. Herrmann, D. Queck, J. Weber, Experimental investigation on a 3000 bar fuel injection system for a SCR-free non-road diesel engine, Fuel, 243 (2019) 342–351. https://doi.org/10.1016/j.fuel.2019.01.122
[8]. J. M. López, F. Jiménez, F. Aparicio, N. Flores, On-road emissions from urban buses with SCR+Urea and EGR+DPF systems using diesel and biodiesel, Transp Res D Transp Environ, 14 (2009). https://doi.org/10.1016/j.trd.2008.07.004
[9]. A. Ferrari, F. Paolicelli, Modal Analysis as a Design Tool for Dynamical Optimization of Common Rail Fuel Injection Systems, SAE Technical Papers, SAE International, (2015). https://doi.org/10.4271/2015-24-2467
[10]. S. Han, J. Kim, J. Lee, A study on the optimal actuation structure design of a direct needle-driven piezo injector for a CRDi engine, Applied Sciences (Switzerland), 7 (2017). https://doi.org/10.3390/app7040320
[11]. H. Zhang, N. Lei, Z. Wang, Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles, Appl Energy, 369 (2024). https://doi.org/10.1016/j.apenergy.2024.123505
[12]. J. Shin, S. Park, Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine, Energy Convers Manag, 284 (2023) 116980. https://doi.org/10.1016/j.enconman.2023.116980
[13]. M. Elkelawy, E. A. El Shenawy, S. A. Mohamed, M. M. Elarabi, H. Alm-Eldin Bastawissi, Impacts of EGR on RCCI engines management: A comprehensive review, Energy Conversion and Management: X, 14 (2022) 100216. https://doi.org/10.1016/j.ecmx.2022.100216
[14]. M. M. Salahi, A. Gharehghani, Control of combustion phasing and operating range extension of natural gas PCCI engines using ozone species, Energy Convers Manag, 199 (2019). https://doi.org/10.1016/j.enconman.2019.112000
[15]. S. Jin, B. Wu, Z. Zi, P. Yang, T. Shi, J. Zhang, Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine, Fuel, 341 (2023) 127668. https://doi.org/10.1016/j.fuel.2023.127668
[16]. J. A. Wloka, S. Pflaum, G. Wachtmeister, Potential and Challenges of a 3000 Bar Common- Rail Injection System Considering Engine Behavior and Emission Level, SAE Int. J. Engines, 3 (2010) 801–813. https://doi.org/10.4271/2010-01-1131
[17]. M. G. Shatrov, A. Y. Dunin, T. Q. Nguyen, Effect of pressure boost on the diesel performance and gaseous emission with fuel spray pressure up to 3000 bar, in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 832 (2020). https://doi.org/10.1088/1757-899X/832/1/012083
[18]. T.Q. Nguyen, Control the Combustion of Fuel Sprays in Power Plants, 2021 IEEE International Conference on Engineering Management of Communication and Technology (EMCTECH), (2021). https://doi.org10.1109/emctech53459.2021.9618982
[19]. N. T. Quynh, H. D. Le, A.Y. Dunin, Influences of injector geometry parameters on fuel injection characteristics and parameters of a diesel engine, Transport and Communications Science Journal, 74 (2023) 530–543. https://doi.org/10.47869/tcsj.74.4.12
[20]. C. Zhai, Y. Jin, Q. Wu, K. Nishida, Y. Ogata, Diesel spray and combustion of multi-hole injectors with micro-hole under ultra-high injection pressure – Combustion characteristics, Fuel, 300 (2021). https://doi.org/10.1016/j.fuel.2021.120949
[21]. S. Brusca, A. Giuffrida, R. Lanzafame, G.E. Corcione, Theoretical and Experimental Analysis of Diesel Sprays behavior from Multiple Injections Common Rail System, SAE Int. J. Engines, (2002). https://doi.org/10.4271/2002-01-2777
[22]. M. G. Shatrov, V. I. Malchuk, A. Y. Dunin, I.G. Shishlov, V. V. Sinyavski, A control method of fuel distribution by combustion chamber zones and its dependence on injection conditions, Thermal Science, 22 (2018) S1425–S1434. https://doi.org/10.2298/TSCI18S5425S
[23]. T. Q. Nguyen, A. Y. Dunin, M. G. Shatrov, An Experimental Approach and a Signal Processing Method with the Common Rail Injection System of a Diesel Engine, International journal of online and biomedical engineering, 17 (2021) 19–31. https://doi.org/10.3991/IJOE.V17I14.27401
[24]. P. Pavan, K. Bhaskar, S. Sekar, Effect of split injection and injection pressure on CRDI engine fuelled with POME-diesel blend, Fuel, 292 (2021) 120242. https://doi.org/10.1016/j.fuel.2021.120242
[25]. Q. Xu, M. Xu, S. Hung, S. Wu, X. Dong, H. Ochiai, Z. Zhao, C. Wang, K. Jin, Diesel Spray Characterization at Ultra-High Injection Pressure of DENSO 250 MPa Common Rail Fuel Injection System, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0821
[26]. C. Zhai, E. Liu, G. Zhang, W. Xing, F. Chang, Y. Jin, H. Luo, K. Nishida, Y. Ogata, Similarity and normalization study of fuel spray and combustion under ultra-high injection pressure and micro-hole diameter conditions–spray characteristics, Energy, 288 (2024). https://doi.org/10.1016/j.energy.2023.129684
[27]. G. Ouyang, S. An. Z. Liu. Y. Li, Common rail injection technology in diesel engines, John Wiley & Son (Asia) Pte Ltd., National defense industry press, 2019.
[2]. A. Gómez, P. Fernández-Yáñez, J.A. Soriano, L. Sánchez-Rodríguez, C. Mata, R. García-Contreras, O. Armas, M.D. Cárdenas, Comparison of real driving emissions from Euro VI buses with diesel and compressed natural gas fuels, Fuel, 289 (2021). https://doi.org/10.1016/j.fuel.2020.119836
[3]. O. Fernie, T. Megaritis, L. Ganippa, E. Al Tingas, Numerical Analysis of Zero-Carbon HCCI Engine Fuelled with Steam Diluted H2/H2O2 Blends, SSRN Electronic Journal, 326 (2022). https://doi.org/10.2139/ssrn.4100930
[4]. A. P. Singh, V. Kumar, A. K. Agarwal, Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes, Appl Energy, 278 (2020). https://doi.org/10.1016/j.apenergy.2020.115644
[5]. A. Turkcan, M. D. Altinkurt, G. Coskun, M. Canakci, Numerical and experimental investigations of the effects of the second injection timing and alcohol-gasoline fuel blends on combustion and emissions of an HCCI-DI engine, Fuel, 219 (2018) 50–61. https://doi.org/10.1016/j.fuel.2018.01.061
[6]. I. D. Dimitrova, T. Megaritis, L. C. Ganippa, E. Al Tingas, Computational analysis of an HCCI engine fuelled with hydrogen/hydrogen peroxide blends, Int J Hydrogen Energy, 47 (2022) 10083–10096. https://doi.org/10.1016/j.ijhydene.2022.01.093
[7]. G. Boccardo, F. Millo, A. Piano, L. Arnone, S. Manelli, S. Fagg, P. Gatti, O. E. Herrmann, D. Queck, J. Weber, Experimental investigation on a 3000 bar fuel injection system for a SCR-free non-road diesel engine, Fuel, 243 (2019) 342–351. https://doi.org/10.1016/j.fuel.2019.01.122
[8]. J. M. López, F. Jiménez, F. Aparicio, N. Flores, On-road emissions from urban buses with SCR+Urea and EGR+DPF systems using diesel and biodiesel, Transp Res D Transp Environ, 14 (2009). https://doi.org/10.1016/j.trd.2008.07.004
[9]. A. Ferrari, F. Paolicelli, Modal Analysis as a Design Tool for Dynamical Optimization of Common Rail Fuel Injection Systems, SAE Technical Papers, SAE International, (2015). https://doi.org/10.4271/2015-24-2467
[10]. S. Han, J. Kim, J. Lee, A study on the optimal actuation structure design of a direct needle-driven piezo injector for a CRDi engine, Applied Sciences (Switzerland), 7 (2017). https://doi.org/10.3390/app7040320
[11]. H. Zhang, N. Lei, Z. Wang, Ammonia-hydrogen propulsion system for carbon-free heavy-duty vehicles, Appl Energy, 369 (2024). https://doi.org/10.1016/j.apenergy.2024.123505
[12]. J. Shin, S. Park, Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine, Energy Convers Manag, 284 (2023) 116980. https://doi.org/10.1016/j.enconman.2023.116980
[13]. M. Elkelawy, E. A. El Shenawy, S. A. Mohamed, M. M. Elarabi, H. Alm-Eldin Bastawissi, Impacts of EGR on RCCI engines management: A comprehensive review, Energy Conversion and Management: X, 14 (2022) 100216. https://doi.org/10.1016/j.ecmx.2022.100216
[14]. M. M. Salahi, A. Gharehghani, Control of combustion phasing and operating range extension of natural gas PCCI engines using ozone species, Energy Convers Manag, 199 (2019). https://doi.org/10.1016/j.enconman.2019.112000
[15]. S. Jin, B. Wu, Z. Zi, P. Yang, T. Shi, J. Zhang, Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine, Fuel, 341 (2023) 127668. https://doi.org/10.1016/j.fuel.2023.127668
[16]. J. A. Wloka, S. Pflaum, G. Wachtmeister, Potential and Challenges of a 3000 Bar Common- Rail Injection System Considering Engine Behavior and Emission Level, SAE Int. J. Engines, 3 (2010) 801–813. https://doi.org/10.4271/2010-01-1131
[17]. M. G. Shatrov, A. Y. Dunin, T. Q. Nguyen, Effect of pressure boost on the diesel performance and gaseous emission with fuel spray pressure up to 3000 bar, in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 832 (2020). https://doi.org/10.1088/1757-899X/832/1/012083
[18]. T.Q. Nguyen, Control the Combustion of Fuel Sprays in Power Plants, 2021 IEEE International Conference on Engineering Management of Communication and Technology (EMCTECH), (2021). https://doi.org10.1109/emctech53459.2021.9618982
[19]. N. T. Quynh, H. D. Le, A.Y. Dunin, Influences of injector geometry parameters on fuel injection characteristics and parameters of a diesel engine, Transport and Communications Science Journal, 74 (2023) 530–543. https://doi.org/10.47869/tcsj.74.4.12
[20]. C. Zhai, Y. Jin, Q. Wu, K. Nishida, Y. Ogata, Diesel spray and combustion of multi-hole injectors with micro-hole under ultra-high injection pressure – Combustion characteristics, Fuel, 300 (2021). https://doi.org/10.1016/j.fuel.2021.120949
[21]. S. Brusca, A. Giuffrida, R. Lanzafame, G.E. Corcione, Theoretical and Experimental Analysis of Diesel Sprays behavior from Multiple Injections Common Rail System, SAE Int. J. Engines, (2002). https://doi.org/10.4271/2002-01-2777
[22]. M. G. Shatrov, V. I. Malchuk, A. Y. Dunin, I.G. Shishlov, V. V. Sinyavski, A control method of fuel distribution by combustion chamber zones and its dependence on injection conditions, Thermal Science, 22 (2018) S1425–S1434. https://doi.org/10.2298/TSCI18S5425S
[23]. T. Q. Nguyen, A. Y. Dunin, M. G. Shatrov, An Experimental Approach and a Signal Processing Method with the Common Rail Injection System of a Diesel Engine, International journal of online and biomedical engineering, 17 (2021) 19–31. https://doi.org/10.3991/IJOE.V17I14.27401
[24]. P. Pavan, K. Bhaskar, S. Sekar, Effect of split injection and injection pressure on CRDI engine fuelled with POME-diesel blend, Fuel, 292 (2021) 120242. https://doi.org/10.1016/j.fuel.2021.120242
[25]. Q. Xu, M. Xu, S. Hung, S. Wu, X. Dong, H. Ochiai, Z. Zhao, C. Wang, K. Jin, Diesel Spray Characterization at Ultra-High Injection Pressure of DENSO 250 MPa Common Rail Fuel Injection System, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0821
[26]. C. Zhai, E. Liu, G. Zhang, W. Xing, F. Chang, Y. Jin, H. Luo, K. Nishida, Y. Ogata, Similarity and normalization study of fuel spray and combustion under ultra-high injection pressure and micro-hole diameter conditions–spray characteristics, Energy, 288 (2024). https://doi.org/10.1016/j.energy.2023.129684
[27]. G. Ouyang, S. An. Z. Liu. Y. Li, Common rail injection technology in diesel engines, John Wiley & Son (Asia) Pte Ltd., National defense industry press, 2019.
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
31/01/2024
Nhận bài sửa
10/07/2024
Chấp nhận đăng
10/08/2024
Xuất bản
15/08/2024
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Nguyễn Thìn, Q., Lê Hoài, Đức, & Nguyễn Cao, V. (1723654800). Thực nghiệm xác định ảnh hưởng của áp suất đến lượng phun và sự phát triển của tia phun nhiên liệu diesel. Tạp Chí Khoa Học Giao Thông Vận Tải, 75(6), 1934-1947. https://doi.org/10.47869/tcsj.75.6.1
Số lần xem tóm tắt
188
Số lần xem bài báo
75