Khảo sát chiến lược phun ảnh hưởng đến quá trình cháy của động cơ cháy bằng nén với nhiên liệu xăng
Email:
thanhnv@epu.edu.vn
Từ khóa:
Cháy bằng nén, nhiên liệu xăng, chiến lược phun
Tóm tắt
Cháy bằng nén với nhiên liệu xăng (GCI - Gasoline compression ignition) là một phương pháp tổ chức quá trình hình thành hỗn hợp và đốt cháy tiên tiến với tiềm năng cải thiện tính hiệu quả sử dụng nhiên liệu và giảm lượng khí thải từ động cơ đốt trong. Chiến lược phun với điển hình là thời điểm phun có ảnh hưởng lớn đến quá trình hình thành và phát triển cháy của động cơ GCI, kiểm soát sự hình thành cháy khuếch tán. Để xem xét thời điểm phun thay đổi để đạt được hiệu quả cao trong chế độ tải trung bình đặc trưng (IMEP 5 bar). Ở nghiên cứu này, tác giả khảo sát thời điểm phun chính thay đổi với các điều kiện vận hành được giữ không đổi: giữ cố định tỷ lệ phun 30%-70%, thời điểm phun mồi -35 CAD ATDC, tốc độ quay động cơ 1500 vòng / phút, nhiệt độ khí nạp 165 oC, áp suất nạp 1 bar và áp suất phun 400 bar. Thông qua kết quả thí nghiệm, các ảnh hưởng đồng thời của quá trình cháy với ngọn lửa lạnh và tia phun của lần phun chính thâm nhập được đánh giá có ảnh hưởng đến tốc độ cháy của quá trình cháy chính. Ngoài ra, nhiệt độ cháy cực đại, tốc độ tăng áp suất trong xy lanh và hiệu suất cháy, hiệu suất chỉ thị của động cơ cũng được đánh giá để tìm ra được góc phun sớm tối ưu với chế độ vận hành này của động cơTài liệu tham khảo
[1]. J. Heywood, Internal combustion engine fundamentals, New York, McGraw-Hill, (1988)
[2]. G. T. Kalghatgi, P. Risberg, H. Ångström, Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion, SAE Technical Papers, (2006). https://doi.org/10.4271/2006-01-3385
[3]. G. T. Kalghatgi, P. Risberg, H. E. Ångström, Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel, SAE Technical Papers, (2007). https://doi.org/10.4271/2007-01-0006
[4]. Van Kien Pham et al., Study of the Effect of the Supercharger on the Output Power of Gasoline Injection Engine, Journal of Technical Education Science, 79 (2023) 1–7. https://doi.org/10.54644/jte.79.2023.1380
[5]. C. Jiang, G. Huang, G. Liu, Y. Qian, X. Lu, Optimizing gasoline compression ignition engine performance and emissions: Combined effects of exhaust gas recirculation and fuel octane number, Appl Therm Eng, 153 (2019) 669-677. https://doi.org/10.1016/j.applthermaleng.2019.03.054
[6]. S. Rickard and J. B. J. Mehdi, The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine, Energies, 21 (2020). https://doi.org/10.3390/en13215535
[7]. K. Cho, L. Zhao, M. Ameen, Y. Zhang, Y. Pei, W. Moore, Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-1145
[8]. M. Babagiray, T. Kocakulak, S. M. S. Ardebili, A. Calam, H. Solmaz. Optimization of operating conditions in a homogeneous charge compression ignition engine with variable compression ratio, International Journal of Environmental Science and Technology, 20 (2022) 5311-5332. https://doi.org/10.1007/S13762-022-04499-9
[9]. A. Calam, B. Aydoğan, S. Halis, The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine, Fuel, 266 (2020). https://doi.org/10.1016/j.fuel.2020.117071
[10]. X. Duan, M-C. Lai, M. Jansons, G. Guo, J. Liu, A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine, Fuel, 258 (2021). https://doi.org/10.1016/j.fuel.2020.119142
[11]. A. Shere, K. A. Subramanian, Experimental investigation on effects of equivalence ratio on combustion with knock, performance, and emission characteristics of dimethyl ether fueled CRDI compression ignition engine under homogeneous charge compression ignition mode. Fuel, 322 (2022). https://doi.org/10.1016/j.fuel.2022.124048
[12]. P. Kumar, S. S. Sandhu, Impact analysis of partially premixed combustion strategy on the emissions of a compression ignition engine fueled with higher octane number fuels: A review, Mater Today Proc, 45 (2021) 5775-5777. https://doi.org/10.1016/j.matpr.2021.02.621
[13]. G. Jia, H. Wang, L. Tong, X. Wang, Z. Zheng, M. Yao, Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode, Appl Energy, 192 (2017) 59 - 70. https://doi.org/10.1016/j.apenergy.2017.01.069
[14]. S. Wang, K. Waart, B. Somers, P. Goey, Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0750
[15]. L. Hildingsson, G. Kalghatgi, N. Tait, B. Johansson, A Harrison, Fuel octane effects in the partially premixed combustion regime in compression ignition engines, SAE Technical Papers, (2009). https://doi.org/10.4271/2009-01-2648
[16]. L. Hildingsson, B. Johansson, G. T. Kalghatgi, A. J. Harrison, Some effects of fuel autoignition quality and volatility in premixed compression ignition engines, SAE Technical Papers (2010). https://doi.org/10.4271/2010-01-0607
[17]. V. Manente, B. Johansson, W. Cannella, Gasoline partially premixed combustion, the future of internal combustion engines? International Journal of Engine Research, (2011). https://doi.org/10.1177/1468087411402441
[18]. A. Labreche, F. Foucher, C. Rousselle, Impact of the Second Injection Characteristics and Dilution Effect on Gasoline Partially Premixed Combustion, SAE Technical Papers, (2014). https://doi.org/10.4271/2014-01-2673
[19]. C. Rousselle, F. Foucher, A. Labreche, Optimization of gasoline partially premixed combustion mode, SAE Technical Papers, (2013). https://doi.org/10.4271/2013-01-2532
[20]. M. P. B. Musculus, Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine, SAE Technical Papers, (2006). https://doi.org/10.4271/2006-01-0079
[21]. M. , Sjöberg, J. E. Dec, Comparing late-cycle autoignition stability for single- and two-stage ignition fuels in HCCI engines, Proceedings of the Combustion Institute, (2007). https://doi.org/10.1016/j.proci.2006.08.010
[22]. V. Ravaglioli, F. Ponti, G. Silvagni, D. Moro, F. Stola, M. Cesare, Investigation of Gasoline Partially Premixed Combustion with External Exhaust Gas Recirculation, SAE Int J Engines, (2021). https://doi.org/10.4271/03-15-05-0033
[23]. R. M. Siewert, A Phenomenological Engine Model for Direct Injection of Liquid Fuels, Spray Penetration, Vaporization, Ignition Delay, and Combustion, SAE Technical Papers, (2007). https://doi.org/10.4271/2007-01-0673
[24]. T. Minagawa, H. Kosaka, T. Kamimoto, A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation, (2000). https://doi.org/10.4271/2000-01-1892
[25]. M. K. Bobba, C. L. Genzale, M. P. B. Musculus. Effect of ignition delay on in-cylinder soot characteristics of a heavy duty diesel engine operating at low temperature conditions, SAE Technical Papers, (2009). https://doi.org/10.4271/2009-01-0946
[26]. P. D. Lopez, J.E. Dec, G. Gentz, Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-0961
[27]. J. Dernotte, J. E. Dec, C. Ji, Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0728
[28]. M. Sjöberg, J.E. Dec, N. P. Cernansky, Potential of thermal stratification and combustion retard for reducing pressure-rise rates in HCCI engines, based on multi-zone modeling and experiments, SAE Technical Papers, (2005). https://doi.org/10.4271/2005-01-0113
[29]. J. E. Dec, Y. Yang, N. Dronniou, Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline. SAE Int J Engines (2011). https://doi.org/10.4271/2011-01-0897
[30]. G. Gentz, J. Dernotte, C. Ji, P. D. Lopez, J. E. Dec. Combustion-Timing control of Low-Temperature gasoline combustion (LTGC) engines by using double Direct-Injections to control kinetic rates, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-1156
[31]. Y. Yang, J. E. Dec, N. Dronniou, W. Cannella, Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges, SAE Int J Engines, (2012). https://doi.org/10.4271/2012-01-1120
[32]. L. Yin, G. Ingesson, S. Shamun, P. Tunestal, R. Johansson, B. Johansson, Sensitivity Analysis of Partially Premixed Combustion (PPC) for Control Purposes, SAE Technical Papers, (2015). https://doi.org/10.4271/2015-01-0884
[33]. M. Sjöberg, J. E. Dec. An investigation into lowest acceptable combustion temperatures for hydrocarbon fuels in HCCI engines, Proceedings of the Combustion Institute (2005). https://doi.org/10.1016/j.proci.2004.08.132
[34]. K. D. Cung, S. A. Ciatti, S. Tanov, Ö. Andersson, Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine, Front Mech Eng, 3 (2017). https://doi.org/10.3389/fmech.2017.00022
[2]. G. T. Kalghatgi, P. Risberg, H. Ångström, Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion, SAE Technical Papers, (2006). https://doi.org/10.4271/2006-01-3385
[3]. G. T. Kalghatgi, P. Risberg, H. E. Ångström, Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel, SAE Technical Papers, (2007). https://doi.org/10.4271/2007-01-0006
[4]. Van Kien Pham et al., Study of the Effect of the Supercharger on the Output Power of Gasoline Injection Engine, Journal of Technical Education Science, 79 (2023) 1–7. https://doi.org/10.54644/jte.79.2023.1380
[5]. C. Jiang, G. Huang, G. Liu, Y. Qian, X. Lu, Optimizing gasoline compression ignition engine performance and emissions: Combined effects of exhaust gas recirculation and fuel octane number, Appl Therm Eng, 153 (2019) 669-677. https://doi.org/10.1016/j.applthermaleng.2019.03.054
[6]. S. Rickard and J. B. J. Mehdi, The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine, Energies, 21 (2020). https://doi.org/10.3390/en13215535
[7]. K. Cho, L. Zhao, M. Ameen, Y. Zhang, Y. Pei, W. Moore, Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-1145
[8]. M. Babagiray, T. Kocakulak, S. M. S. Ardebili, A. Calam, H. Solmaz. Optimization of operating conditions in a homogeneous charge compression ignition engine with variable compression ratio, International Journal of Environmental Science and Technology, 20 (2022) 5311-5332. https://doi.org/10.1007/S13762-022-04499-9
[9]. A. Calam, B. Aydoğan, S. Halis, The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine, Fuel, 266 (2020). https://doi.org/10.1016/j.fuel.2020.117071
[10]. X. Duan, M-C. Lai, M. Jansons, G. Guo, J. Liu, A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine, Fuel, 258 (2021). https://doi.org/10.1016/j.fuel.2020.119142
[11]. A. Shere, K. A. Subramanian, Experimental investigation on effects of equivalence ratio on combustion with knock, performance, and emission characteristics of dimethyl ether fueled CRDI compression ignition engine under homogeneous charge compression ignition mode. Fuel, 322 (2022). https://doi.org/10.1016/j.fuel.2022.124048
[12]. P. Kumar, S. S. Sandhu, Impact analysis of partially premixed combustion strategy on the emissions of a compression ignition engine fueled with higher octane number fuels: A review, Mater Today Proc, 45 (2021) 5775-5777. https://doi.org/10.1016/j.matpr.2021.02.621
[13]. G. Jia, H. Wang, L. Tong, X. Wang, Z. Zheng, M. Yao, Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode, Appl Energy, 192 (2017) 59 - 70. https://doi.org/10.1016/j.apenergy.2017.01.069
[14]. S. Wang, K. Waart, B. Somers, P. Goey, Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0750
[15]. L. Hildingsson, G. Kalghatgi, N. Tait, B. Johansson, A Harrison, Fuel octane effects in the partially premixed combustion regime in compression ignition engines, SAE Technical Papers, (2009). https://doi.org/10.4271/2009-01-2648
[16]. L. Hildingsson, B. Johansson, G. T. Kalghatgi, A. J. Harrison, Some effects of fuel autoignition quality and volatility in premixed compression ignition engines, SAE Technical Papers (2010). https://doi.org/10.4271/2010-01-0607
[17]. V. Manente, B. Johansson, W. Cannella, Gasoline partially premixed combustion, the future of internal combustion engines? International Journal of Engine Research, (2011). https://doi.org/10.1177/1468087411402441
[18]. A. Labreche, F. Foucher, C. Rousselle, Impact of the Second Injection Characteristics and Dilution Effect on Gasoline Partially Premixed Combustion, SAE Technical Papers, (2014). https://doi.org/10.4271/2014-01-2673
[19]. C. Rousselle, F. Foucher, A. Labreche, Optimization of gasoline partially premixed combustion mode, SAE Technical Papers, (2013). https://doi.org/10.4271/2013-01-2532
[20]. M. P. B. Musculus, Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine, SAE Technical Papers, (2006). https://doi.org/10.4271/2006-01-0079
[21]. M. , Sjöberg, J. E. Dec, Comparing late-cycle autoignition stability for single- and two-stage ignition fuels in HCCI engines, Proceedings of the Combustion Institute, (2007). https://doi.org/10.1016/j.proci.2006.08.010
[22]. V. Ravaglioli, F. Ponti, G. Silvagni, D. Moro, F. Stola, M. Cesare, Investigation of Gasoline Partially Premixed Combustion with External Exhaust Gas Recirculation, SAE Int J Engines, (2021). https://doi.org/10.4271/03-15-05-0033
[23]. R. M. Siewert, A Phenomenological Engine Model for Direct Injection of Liquid Fuels, Spray Penetration, Vaporization, Ignition Delay, and Combustion, SAE Technical Papers, (2007). https://doi.org/10.4271/2007-01-0673
[24]. T. Minagawa, H. Kosaka, T. Kamimoto, A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation, (2000). https://doi.org/10.4271/2000-01-1892
[25]. M. K. Bobba, C. L. Genzale, M. P. B. Musculus. Effect of ignition delay on in-cylinder soot characteristics of a heavy duty diesel engine operating at low temperature conditions, SAE Technical Papers, (2009). https://doi.org/10.4271/2009-01-0946
[26]. P. D. Lopez, J.E. Dec, G. Gentz, Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-0961
[27]. J. Dernotte, J. E. Dec, C. Ji, Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0728
[28]. M. Sjöberg, J.E. Dec, N. P. Cernansky, Potential of thermal stratification and combustion retard for reducing pressure-rise rates in HCCI engines, based on multi-zone modeling and experiments, SAE Technical Papers, (2005). https://doi.org/10.4271/2005-01-0113
[29]. J. E. Dec, Y. Yang, N. Dronniou, Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline. SAE Int J Engines (2011). https://doi.org/10.4271/2011-01-0897
[30]. G. Gentz, J. Dernotte, C. Ji, P. D. Lopez, J. E. Dec. Combustion-Timing control of Low-Temperature gasoline combustion (LTGC) engines by using double Direct-Injections to control kinetic rates, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-1156
[31]. Y. Yang, J. E. Dec, N. Dronniou, W. Cannella, Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges, SAE Int J Engines, (2012). https://doi.org/10.4271/2012-01-1120
[32]. L. Yin, G. Ingesson, S. Shamun, P. Tunestal, R. Johansson, B. Johansson, Sensitivity Analysis of Partially Premixed Combustion (PPC) for Control Purposes, SAE Technical Papers, (2015). https://doi.org/10.4271/2015-01-0884
[33]. M. Sjöberg, J. E. Dec. An investigation into lowest acceptable combustion temperatures for hydrocarbon fuels in HCCI engines, Proceedings of the Combustion Institute (2005). https://doi.org/10.1016/j.proci.2004.08.132
[34]. K. D. Cung, S. A. Ciatti, S. Tanov, Ö. Andersson, Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine, Front Mech Eng, 3 (2017). https://doi.org/10.3389/fmech.2017.00022
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
12/08/2023
Nhận bài sửa
17/10/2023
Chấp nhận đăng
12/12/2023
Xuất bản
15/12/2023
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Ngô Văn, T., Nguyễn Tường, V., & Nguyễn Tùng, L. (3200). Khảo sát chiến lược phun ảnh hưởng đến quá trình cháy của động cơ cháy bằng nén với nhiên liệu xăng. Tạp Chí Khoa Học Giao Thông Vận Tải, 74(9), 1033-1047. https://doi.org/10.47869/tcsj.74.9.2
Số lần xem tóm tắt
122
Số lần xem bài báo
72