Investigation of injection strategy impact on combustion process in gasoline partially premixed combustion
Email:
thanhnv@epu.edu.vn
Keywords:
Compression Ignition, Gasoline fuel, Injection strategy
Abstract
Gasoline compression ignition (GCI) is a combustion method that involves the advanced formation and combustion of the mixture, with the potential to improve fuel efficiency and reduce emissions from internal combustion engines. Injection strategy, particularly the injection timing, significantly influences the mixture formation and combustion development in GCI engines, controlling the diffusion-controlled combustion. To explore the timing variations for achieving high efficiency in the characteristic medium load operation (IMEP 5 bar), in this study, the authors investigated the main injection timing change under constant operating conditions: fixed injection ratio of 30%-70%, main injection timing at -35 CAD ATDC, engine speed of 1500 rpm, intake air temperature of 165°C, intake pressure of 1 bar, and injection pressure of 400 bar. Through experimental results, the combined effects of combustion with cold flames and the penetration of the main injection jet were assessed for their influence on the combustion rate of the main combustion process. Furthermore, the maximum combustion temperature, pressure rise rate in the cylinder, combustion efficiency, and indicated engine efficiency were evaluated to determine the optimal early injection angle for this engine operating modeReferences
[1]. J. Heywood, Internal combustion engine fundamentals, New York, McGraw-Hill, (1988)
[2]. G. T. Kalghatgi, P. Risberg, H. Ångström, Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion, SAE Technical Papers, (2006). https://doi.org/10.4271/2006-01-3385
[3]. G. T. Kalghatgi, P. Risberg, H. E. Ångström, Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel, SAE Technical Papers, (2007). https://doi.org/10.4271/2007-01-0006
[4]. Van Kien Pham et al., Study of the Effect of the Supercharger on the Output Power of Gasoline Injection Engine, Journal of Technical Education Science, 79 (2023) 1–7. https://doi.org/10.54644/jte.79.2023.1380
[5]. C. Jiang, G. Huang, G. Liu, Y. Qian, X. Lu, Optimizing gasoline compression ignition engine performance and emissions: Combined effects of exhaust gas recirculation and fuel octane number, Appl Therm Eng, 153 (2019) 669-677. https://doi.org/10.1016/j.applthermaleng.2019.03.054
[6]. S. Rickard and J. B. J. Mehdi, The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine, Energies, 21 (2020). https://doi.org/10.3390/en13215535
[7]. K. Cho, L. Zhao, M. Ameen, Y. Zhang, Y. Pei, W. Moore, Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-1145
[8]. M. Babagiray, T. Kocakulak, S. M. S. Ardebili, A. Calam, H. Solmaz. Optimization of operating conditions in a homogeneous charge compression ignition engine with variable compression ratio, International Journal of Environmental Science and Technology, 20 (2022) 5311-5332. https://doi.org/10.1007/S13762-022-04499-9
[9]. A. Calam, B. Aydoğan, S. Halis, The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine, Fuel, 266 (2020). https://doi.org/10.1016/j.fuel.2020.117071
[10]. X. Duan, M-C. Lai, M. Jansons, G. Guo, J. Liu, A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine, Fuel, 258 (2021). https://doi.org/10.1016/j.fuel.2020.119142
[11]. A. Shere, K. A. Subramanian, Experimental investigation on effects of equivalence ratio on combustion with knock, performance, and emission characteristics of dimethyl ether fueled CRDI compression ignition engine under homogeneous charge compression ignition mode. Fuel, 322 (2022). https://doi.org/10.1016/j.fuel.2022.124048
[12]. P. Kumar, S. S. Sandhu, Impact analysis of partially premixed combustion strategy on the emissions of a compression ignition engine fueled with higher octane number fuels: A review, Mater Today Proc, 45 (2021) 5775-5777. https://doi.org/10.1016/j.matpr.2021.02.621
[13]. G. Jia, H. Wang, L. Tong, X. Wang, Z. Zheng, M. Yao, Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode, Appl Energy, 192 (2017) 59 - 70. https://doi.org/10.1016/j.apenergy.2017.01.069
[14]. S. Wang, K. Waart, B. Somers, P. Goey, Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0750
[15]. L. Hildingsson, G. Kalghatgi, N. Tait, B. Johansson, A Harrison, Fuel octane effects in the partially premixed combustion regime in compression ignition engines, SAE Technical Papers, (2009). https://doi.org/10.4271/2009-01-2648
[16]. L. Hildingsson, B. Johansson, G. T. Kalghatgi, A. J. Harrison, Some effects of fuel autoignition quality and volatility in premixed compression ignition engines, SAE Technical Papers (2010). https://doi.org/10.4271/2010-01-0607
[17]. V. Manente, B. Johansson, W. Cannella, Gasoline partially premixed combustion, the future of internal combustion engines? International Journal of Engine Research, (2011). https://doi.org/10.1177/1468087411402441
[18]. A. Labreche, F. Foucher, C. Rousselle, Impact of the Second Injection Characteristics and Dilution Effect on Gasoline Partially Premixed Combustion, SAE Technical Papers, (2014). https://doi.org/10.4271/2014-01-2673
[19]. C. Rousselle, F. Foucher, A. Labreche, Optimization of gasoline partially premixed combustion mode, SAE Technical Papers, (2013). https://doi.org/10.4271/2013-01-2532
[20]. M. P. B. Musculus, Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine, SAE Technical Papers, (2006). https://doi.org/10.4271/2006-01-0079
[21]. M. , Sjöberg, J. E. Dec, Comparing late-cycle autoignition stability for single- and two-stage ignition fuels in HCCI engines, Proceedings of the Combustion Institute, (2007). https://doi.org/10.1016/j.proci.2006.08.010
[22]. V. Ravaglioli, F. Ponti, G. Silvagni, D. Moro, F. Stola, M. Cesare, Investigation of Gasoline Partially Premixed Combustion with External Exhaust Gas Recirculation, SAE Int J Engines, (2021). https://doi.org/10.4271/03-15-05-0033
[23]. R. M. Siewert, A Phenomenological Engine Model for Direct Injection of Liquid Fuels, Spray Penetration, Vaporization, Ignition Delay, and Combustion, SAE Technical Papers, (2007). https://doi.org/10.4271/2007-01-0673
[24]. T. Minagawa, H. Kosaka, T. Kamimoto, A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation, (2000). https://doi.org/10.4271/2000-01-1892
[25]. M. K. Bobba, C. L. Genzale, M. P. B. Musculus. Effect of ignition delay on in-cylinder soot characteristics of a heavy duty diesel engine operating at low temperature conditions, SAE Technical Papers, (2009). https://doi.org/10.4271/2009-01-0946
[26]. P. D. Lopez, J.E. Dec, G. Gentz, Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-0961
[27]. J. Dernotte, J. E. Dec, C. Ji, Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0728
[28]. M. Sjöberg, J.E. Dec, N. P. Cernansky, Potential of thermal stratification and combustion retard for reducing pressure-rise rates in HCCI engines, based on multi-zone modeling and experiments, SAE Technical Papers, (2005). https://doi.org/10.4271/2005-01-0113
[29]. J. E. Dec, Y. Yang, N. Dronniou, Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline. SAE Int J Engines (2011). https://doi.org/10.4271/2011-01-0897
[30]. G. Gentz, J. Dernotte, C. Ji, P. D. Lopez, J. E. Dec. Combustion-Timing control of Low-Temperature gasoline combustion (LTGC) engines by using double Direct-Injections to control kinetic rates, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-1156
[31]. Y. Yang, J. E. Dec, N. Dronniou, W. Cannella, Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges, SAE Int J Engines, (2012). https://doi.org/10.4271/2012-01-1120
[32]. L. Yin, G. Ingesson, S. Shamun, P. Tunestal, R. Johansson, B. Johansson, Sensitivity Analysis of Partially Premixed Combustion (PPC) for Control Purposes, SAE Technical Papers, (2015). https://doi.org/10.4271/2015-01-0884
[33]. M. Sjöberg, J. E. Dec. An investigation into lowest acceptable combustion temperatures for hydrocarbon fuels in HCCI engines, Proceedings of the Combustion Institute (2005). https://doi.org/10.1016/j.proci.2004.08.132
[34]. K. D. Cung, S. A. Ciatti, S. Tanov, Ö. Andersson, Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine, Front Mech Eng, 3 (2017). https://doi.org/10.3389/fmech.2017.00022
[2]. G. T. Kalghatgi, P. Risberg, H. Ångström, Advantages of Fuels with High Resistance to Auto-ignition in Late-injection, Low-temperature, Compression Ignition Combustion, SAE Technical Papers, (2006). https://doi.org/10.4271/2006-01-3385
[3]. G. T. Kalghatgi, P. Risberg, H. E. Ångström, Partially pre-mixed auto-ignition of gasoline to attain low smoke and low NOx at high load in a compression ignition engine and comparison with a diesel fuel, SAE Technical Papers, (2007). https://doi.org/10.4271/2007-01-0006
[4]. Van Kien Pham et al., Study of the Effect of the Supercharger on the Output Power of Gasoline Injection Engine, Journal of Technical Education Science, 79 (2023) 1–7. https://doi.org/10.54644/jte.79.2023.1380
[5]. C. Jiang, G. Huang, G. Liu, Y. Qian, X. Lu, Optimizing gasoline compression ignition engine performance and emissions: Combined effects of exhaust gas recirculation and fuel octane number, Appl Therm Eng, 153 (2019) 669-677. https://doi.org/10.1016/j.applthermaleng.2019.03.054
[6]. S. Rickard and J. B. J. Mehdi, The Role of Multiple Injections on Combustion in a Light-Duty PPC Engine, Energies, 21 (2020). https://doi.org/10.3390/en13215535
[7]. K. Cho, L. Zhao, M. Ameen, Y. Zhang, Y. Pei, W. Moore, Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-1145
[8]. M. Babagiray, T. Kocakulak, S. M. S. Ardebili, A. Calam, H. Solmaz. Optimization of operating conditions in a homogeneous charge compression ignition engine with variable compression ratio, International Journal of Environmental Science and Technology, 20 (2022) 5311-5332. https://doi.org/10.1007/S13762-022-04499-9
[9]. A. Calam, B. Aydoğan, S. Halis, The comparison of combustion, engine performance and emission characteristics of ethanol, methanol, fusel oil, butanol, isopropanol and naphtha with n-heptane blends on HCCI engine, Fuel, 266 (2020). https://doi.org/10.1016/j.fuel.2020.117071
[10]. X. Duan, M-C. Lai, M. Jansons, G. Guo, J. Liu, A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine, Fuel, 258 (2021). https://doi.org/10.1016/j.fuel.2020.119142
[11]. A. Shere, K. A. Subramanian, Experimental investigation on effects of equivalence ratio on combustion with knock, performance, and emission characteristics of dimethyl ether fueled CRDI compression ignition engine under homogeneous charge compression ignition mode. Fuel, 322 (2022). https://doi.org/10.1016/j.fuel.2022.124048
[12]. P. Kumar, S. S. Sandhu, Impact analysis of partially premixed combustion strategy on the emissions of a compression ignition engine fueled with higher octane number fuels: A review, Mater Today Proc, 45 (2021) 5775-5777. https://doi.org/10.1016/j.matpr.2021.02.621
[13]. G. Jia, H. Wang, L. Tong, X. Wang, Z. Zheng, M. Yao, Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode, Appl Energy, 192 (2017) 59 - 70. https://doi.org/10.1016/j.apenergy.2017.01.069
[14]. S. Wang, K. Waart, B. Somers, P. Goey, Experimental Study on the Potential of Higher Octane Number Fuels for Low Load Partially Premixed Combustion, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0750
[15]. L. Hildingsson, G. Kalghatgi, N. Tait, B. Johansson, A Harrison, Fuel octane effects in the partially premixed combustion regime in compression ignition engines, SAE Technical Papers, (2009). https://doi.org/10.4271/2009-01-2648
[16]. L. Hildingsson, B. Johansson, G. T. Kalghatgi, A. J. Harrison, Some effects of fuel autoignition quality and volatility in premixed compression ignition engines, SAE Technical Papers (2010). https://doi.org/10.4271/2010-01-0607
[17]. V. Manente, B. Johansson, W. Cannella, Gasoline partially premixed combustion, the future of internal combustion engines? International Journal of Engine Research, (2011). https://doi.org/10.1177/1468087411402441
[18]. A. Labreche, F. Foucher, C. Rousselle, Impact of the Second Injection Characteristics and Dilution Effect on Gasoline Partially Premixed Combustion, SAE Technical Papers, (2014). https://doi.org/10.4271/2014-01-2673
[19]. C. Rousselle, F. Foucher, A. Labreche, Optimization of gasoline partially premixed combustion mode, SAE Technical Papers, (2013). https://doi.org/10.4271/2013-01-2532
[20]. M. P. B. Musculus, Multiple Simultaneous Optical Diagnostic Imaging of Early-Injection Low-Temperature Combustion in a Heavy-Duty Diesel Engine, SAE Technical Papers, (2006). https://doi.org/10.4271/2006-01-0079
[21]. M. , Sjöberg, J. E. Dec, Comparing late-cycle autoignition stability for single- and two-stage ignition fuels in HCCI engines, Proceedings of the Combustion Institute, (2007). https://doi.org/10.1016/j.proci.2006.08.010
[22]. V. Ravaglioli, F. Ponti, G. Silvagni, D. Moro, F. Stola, M. Cesare, Investigation of Gasoline Partially Premixed Combustion with External Exhaust Gas Recirculation, SAE Int J Engines, (2021). https://doi.org/10.4271/03-15-05-0033
[23]. R. M. Siewert, A Phenomenological Engine Model for Direct Injection of Liquid Fuels, Spray Penetration, Vaporization, Ignition Delay, and Combustion, SAE Technical Papers, (2007). https://doi.org/10.4271/2007-01-0673
[24]. T. Minagawa, H. Kosaka, T. Kamimoto, A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation, (2000). https://doi.org/10.4271/2000-01-1892
[25]. M. K. Bobba, C. L. Genzale, M. P. B. Musculus. Effect of ignition delay on in-cylinder soot characteristics of a heavy duty diesel engine operating at low temperature conditions, SAE Technical Papers, (2009). https://doi.org/10.4271/2009-01-0946
[26]. P. D. Lopez, J.E. Dec, G. Gentz, Φ-Sensitivity for LTGC Engines: Understanding the Fundamentals and Tailoring Fuel Blends to Maximize This Property, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-0961
[27]. J. Dernotte, J. E. Dec, C. Ji, Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy, SAE Technical Papers, (2017). https://doi.org/10.4271/2017-01-0728
[28]. M. Sjöberg, J.E. Dec, N. P. Cernansky, Potential of thermal stratification and combustion retard for reducing pressure-rise rates in HCCI engines, based on multi-zone modeling and experiments, SAE Technical Papers, (2005). https://doi.org/10.4271/2005-01-0113
[29]. J. E. Dec, Y. Yang, N. Dronniou, Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline. SAE Int J Engines (2011). https://doi.org/10.4271/2011-01-0897
[30]. G. Gentz, J. Dernotte, C. Ji, P. D. Lopez, J. E. Dec. Combustion-Timing control of Low-Temperature gasoline combustion (LTGC) engines by using double Direct-Injections to control kinetic rates, SAE Technical Papers, (2019). https://doi.org/10.4271/2019-01-1156
[31]. Y. Yang, J. E. Dec, N. Dronniou, W. Cannella, Boosted HCCI Combustion Using Low-Octane Gasoline with Fully Premixed and Partially Stratified Charges, SAE Int J Engines, (2012). https://doi.org/10.4271/2012-01-1120
[32]. L. Yin, G. Ingesson, S. Shamun, P. Tunestal, R. Johansson, B. Johansson, Sensitivity Analysis of Partially Premixed Combustion (PPC) for Control Purposes, SAE Technical Papers, (2015). https://doi.org/10.4271/2015-01-0884
[33]. M. Sjöberg, J. E. Dec. An investigation into lowest acceptable combustion temperatures for hydrocarbon fuels in HCCI engines, Proceedings of the Combustion Institute (2005). https://doi.org/10.1016/j.proci.2004.08.132
[34]. K. D. Cung, S. A. Ciatti, S. Tanov, Ö. Andersson, Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine, Front Mech Eng, 3 (2017). https://doi.org/10.3389/fmech.2017.00022
Downloads
Download data is not yet available.
Received
12/08/2023
Revised
17/10/2023
Accepted
12/12/2023
Published
15/12/2023
Type
Research Article
How to Cite
Ngô Văn, T., Nguyễn Tường, V., & Nguyễn Tùng, L. (3200). Investigation of injection strategy impact on combustion process in gasoline partially premixed combustion. Transport and Communications Science Journal, 74(9), 1033-1047. https://doi.org/10.47869/tcsj.74.9.2
Abstract Views
209
Total Galley Views
227





