Application of homogenization method to predict electromechanical properties of composite two phases

  • The Nguyen Tien

    University of Transport Technology, No 54 Trieu Khuc Street, Hanoi, Vietnam
  • Thien Nguyen Luong

    Space Technology Institute - VAST, No 18 Hoang Quoc Viet Street, Hanoi, Vietnam
Email: nguyenluongthien140686@gmail.com
Keywords: Composite two phases, materials of piezomagnetic, materials of piezoelectric, average priciple, homogenization method, electromechanical properties

Abstract

Composite materials with two phases piezoelectric and magnetic (MEE) are widely used in daily life as well as in industry. The study of the physical and mechanical properties of this material has received a lot of attention for the past two decades in order to develop smart materials for many aspects in industry. MEE materials are a combination of piezoelectric and piezoelectric materials. Its characteristic feature is the change of piezoelectric mechanical properties by magnetic field and vice versa. The determination of physical and mechanical properties at the macroscopic material level (conductivity coefficient, magnetic conductivity, electro-magnetic coefficient ...) has always played an important role in the research, calculation and development of this material. In this article, we used the analytical method based on the average principle and the homogenization method to find out the behavior of two-phase piezoelectric and magnetic composite materials at the macroscopic level. Additionally, our study figured out the following formulas: calculate mechanical coefficients in macroscopic form: such as stiffness coefficient, piezoelectric coefficient, piezomagnetic coefficient, electro-magnetic coefficient in two types of materials: layers and fibers

References

[1]. J. Y. Li, M. L. Dunn, Micromechanic of magnetoelectroelastic composite materials: average fields and effective behavior, Journal of Intelligent Material Systems and Structures, 9 (1998) 404 – 416. https://doi.org/10.1177/1045389X9800900
[2]. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metallurgica, Elsevier, 21 (1973) 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
[3]. J. B. Castillero et al., Homogenization of magneto – electro –elastic multilaminated materials, The Quarterly jounal of Mechanics and Applied Mathematics, 61 (2008) 311-332.
[4]. J. B. Castillero et al., Homogenization and effective properties of periodic hermomagnetoelectroelastic composite, Journal of mechanics of materials and structures, 4 (2009) 819-836.
[5]. J.V. Suchtelen, Product properties: a new application of composite materials, Philips Res. Rep., 27 (1972) 28-37.
[6]. M. Fiebig, Revival of the magnetoelectric effect, Journal of Physics D:
Applied Physics, 38 (2005) R123. https://doi.org/10.1088/0022-3727/38/8/R01
[7]. D. K. Maiti, Bending and Buckling Analyses of Composite Laminates with and without Presence of Damage and its Passive Control with Optimized Piezoelectric Patch Location, Proc Indian Natn Sci Acad., 82 (2016) 329-340.
[8]. D.K. Maiti, V.M.Sreehari, Post-buckling control of damaged composite plates using piezoelectric patches, International Conference on Smart Materials, Structures and Systems, (2017) 1-5.
[9]. D. Varelis, D. A. Saravanos, Coupled buckling and postbuckling analysis of active laminated piezoelectric composite plates, International Journal of Solids and Structures, 41 (2004) 1519-1538. https://doi.org/10.1016/j.ijsolstr.2003.09.034
[10]. H.-S. Shen, Postbuckling of shear deformable laminated plates with piezoelectric actuators under complex loading conditions, International Journal of Solids and Structures, 38 (2001) 7703-7721. https://doi.org/10.1016/S0020-7683(01)00120-2
[11]. D.H. Bich, D.V.Dung, V.H.Nam, Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels, Composite Structures, 94 (2012) 2465-2473.
[12]. D.H. Bich, D.V.Dung, V.H.Nam, Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells, Composite Structures, 96 (2013) 384-395. https://doi.org/10.1016/j.compstruct.2012.10.009
[13]. D.V. Dung, V.H. Nam, Nonlinear dynamic buckling of eccentrically stiffened functionally graded cylindrical shells subjected to axial compression, The 2nd International Conference on Engineering Mechanics and Automation (ICEMA2), pp. 226-235, 2012
[14]. Nguyen Dinh Duc, Pham Hong Cong, Nonlinear thermal stability of eccentrically stiffened functionally graded truncated conical shells surrounded on elastic foundations, European Journal of Mechanics – A/Solids, 50 (2015) 120-131. https://doi.org/10.1016/j.euromechsol.2014.11.006
[15]. Nguyen Dinh Duc, Phạm Toan Thang, Nonlinear response of imperfect eccentrically stiffened ceramic-metal-ceramic S-FGM thin circular cylindrical shells surrounded on elastic foundations under uniform radial load, Mechanics of Advanced Materials and Structures, 22 (2015) 1031-1038
[16]. Phan Dao Hoang Hiep, Thai Hoang Chien, Nguyen Xuan Hung, Analysis of laminated composite plates with integrated piezoelectric layers using the edge-based smoothed finite element method (ES-FEM), Proceedings of the International Conference Solid, 2010.
[17]. E. Dieulesaint, D. Royer, Ondes élastiques dans les solides : application au traitement du signal, Masson, 13, 1974.
[18]. C. W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases, Physical Review B, APS, 50 (1994) 6082. https://doi.org/10.1103/PhysRevB.50.6082
[19]. V. Preault, Méthodes d’homogénéisation pour la modélisation électromagnétique de matériaux composites, Université Paris Sud, 2013.
[20]. R. Abdelmoula, J. Marigo, The effective behavior of a fiber bridged crack, Journal of the Mechanics and Physics of Solids, 48 (2000) 2419-2444. https://doi.org/10.1016/S0022-5096(00)00003-X
[21]. J. Bravo-Castillero et al., Asymptotique homogenization of laminated piezocomposite materials, International Journal of Solids and Structures, 35 (1998) 527-541. https://doi.org/10.1016/S0020-7683(97)00028-0
[22]. A. Zaoui, Plasticité: Approches en champ moyen, Homogénéisation en mécanique des matériaux, Tome 2: Comportements non linéaires et problèmes ouverts, Hermes science, (2001) 17-44.
[23]. G. W. Milton, The theory of composites, The Theory of Composites, by Graeme W. Milton, pp. 748, 2002.
[24]. P. Suquet, Analyse limite et homogénéisation, Comptes Rendus de l’Academie des Sciences-Series IIB-Mechanics, 296 (1983) 1355-1358.
[25]. Y. Benveniste, G. Milton, New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages, Journal of the Mechanics and Physics of Solids, 51 (2003) 1773-1813. https://doi.org/10.1016/S0022-5096(03)00074-7

Downloads

Download data is not yet available.
Received
09/04/2023
Revised
12/06/2023
Accepted
09/08/2023
Type
Research Article
How to Cite
Nguyễn Tiến, T., & Nguyễn Lương, T. (1). Application of homogenization method to predict electromechanical properties of composite two phases. Transport and Communications Science Journal, 74(6), 718-734. https://doi.org/10.47869/tcsj.74.6.3
Abstract Views
50
Total Galley Views
53