Application of artificial neural network to estimate distribution of thermal in the asphalt concrete from situ temperature monitoring data and proposed temperature model application for determination of elastic deflection pavement using Benkelman beam

  • Thao Tran Thi Thu

    The University of Danang – University of Science and Technology, 54 Nguyen Luong Bang Str., Danang City, Viet Nam
  • Hai Nguyen Hong

    The University of Danang – University of Science and Technology, 54 Nguyen Luong Bang Str., Danang City, Viet Nam
  • Phuc Nguyen Quang

    University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam
Email: tttthao@dut.udn.vn
Keywords: temperature distribution, Artificial Neural Networks, hot mix asphalt concrete, in situ temperature monitoring, statistical model

Abstract

Accurately predicting the temperature distribution in asphalt concrete (AC) is essential for assessing the strength and durability of flexible pavements. This study reports the temperature measurements in a 13cm-thick AC and develops a prediction model for the temperature distribution using an artificial neural network (ANN) approach. The ANN model is used to estimate temperature data at a depth of 4cm in AC, which is then used to develop a regression model for predicting the temperature of AC at 4cm depth, necessary for elastic modulus testing with a Benkelman beam. The ANN model shows high accuracy in predicting the temperature distribution in AC, with an R2 value of 0.996 and an RMSE of 0.582°C. The regression models for predicting the temperature of AC at a depth of 4cm also demonstrate promising results, with RMSE errors ranging from 0.847°C to 1.367°C, depending on the number of input variables required by the model

References

[1]. T.T.T. Tran, H.H. Nguyen, P.N. Pham, T. Nguyen, Q. Phuc, H.N. Huynh, Temperature-related thermal properties of paving materials : experimental analysis and effect on thermal distribution in semi-rigid pavement, Road Mater. Pavement Des, 2023. https://doi.org/10.1080/146740629.2023.2170270
[2]. AASHTO 2008, Mechanistic-Empirical Pavement Design Guide, Natl. Coop. Highw. Res. Progr. Transp. Board Natl. Res. Counc, (2008) 194.
[3]. C. Yavuzturk, K. Ksaibati, A.D. Chiasson, Assessment of temperature fluctuations in asphalt pavements due to thermal environmental conditions using a two-dimensional, transient finite-difference approach, J. Mater. Civ. Eng, 17 (2005) 465–475. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:4(465)
[4]. M.J.C. Minhoto, J.C. Pais, P.A.A. Pereira, L.G. Picado-Santos, Predicting asphalt pavement temperature with a three-dimensional finite element method, Transp. Res. Rec, (2005) 96–110. https://doi.org/10.3141/1919-11
[5]. J. Chen, M. Zhang, H. Wang, L. Li, Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure, Appl. Therm. Eng, 84 (2015) 367,4–374. https://doi.org/10.1016/j.applthermaleng.2015.03.070
[6]. B. Athukorallage, T. Dissanayaka, S. Senadheera, D. James, Performance analysis of incorporating phase change materials in asphalt concrete pavements, Constr. Build. Mater, 164 (2018) 419–432. https://doi.org/10.1016/j.conbuildmat.2017.12.226
[7]. J. Basheer Sheeba, A. Krishnan Rohini, Structural and Thermal Analysis of Asphalt Solar Collector Using Finite Element Method, J. Energy, 2014 (2014) 1–9. https://doi.org/10.1155/2014/602087
[8]. H.F. Hassan, A.S. Al-Nuaimi, R. Taha, T.M.A. Jafar, Development of Asphalt Pavement Temperature Models for Oman, J. Eng. Res. [TJER], 2 (2005) 32. https://doi.org/10.24200/tjer.vol2iss1pp32-42
[9]. I.M.A. Ariawan, B.S. Subagio, B.H. Setiadji, Development of asphalt pavement temperature model for tropical climate conditions in West Bali region, Procedia Eng, 125 (2015) 474–480. https://doi.org/10.1016/j.proeng.2015.11.126
[10]. J. Chao, Z. Jinxi, Prediction Model for Asphalt Pavement Temperature in High-Temperature Season in Beijing, Adv. Civ. Eng. 2018, 2018. https://doi.org/10.1155/2018/1837952
[11]. J. Chen, H. Wang, P. Xie, Pavement temperature prediction: Theoretical models and critical affecting factors, Appl. Therm. Eng, 158 (2019) 113755. https://doi.org/10.1016/j.applthermaleng.2019.113755
[12]. M.A. Abo-Hashema, Modeling pavement temperature prediction using artificial neural networks, Airf. Highw, Pavement 2013 Sustain. Effic. Pavements - Proc. 2013 Airf. Highw. Pavement Conf, (2013) 490–505. https://doi.org/10.1061/9780784413005.039
[13]. P.V. B. Matić, D. Matić, S. Sremac, N. Radović, A Model For The Pavement Temperature Prediction At Specified Depth Using Neural Networks, Metal, 52 (2013) 505–508.
[14]. T.T.T. Tran, T. Nguyen, P.N. Pham, H.H. Nguyen, P.Q. Nguyen, Thermal distribution in cement-treated base: Effect of curing methods and temperature estimation using Artificial Neural Networks, Constr. Build. Mater, 279 (2021) 122528.https://doi.org/10.1016/j.conbuildmat.2021.122528
[15]. T. T. T. Tran, H. H. Nguyen, P. Q. Nguyen, T. Nguyen, P. N. Pham, V.T. Tran, Developing Statistical Models to Predict Temperature Distribution in Asphalt Concrete in Danang City, Springer Singapore, 2022, 567-574. https://doi.org/10.1007/978-981-16-7160-9
[16]. TCVN 8867 : 2011, Áo đường mềm - Xác định mô đun đàn hồi chung của kết cấu bằng cần đo võng Benkelman, Bộ Khoa Học và Công Nghệ, 2011.
[17]. TCVN 8819-2011, Bê tông nhựa nóng - Yêu câu thi công và nghiệm thu, Bộ khoa học và công nghệ, 2011.
[18]. TCVN 8858-2011, Móng cấp phối đá dăm và cấp phối thiên nhiên gia cố xi măng trong kết cấu áo đường ô tô - Thi công và nghiệm thu, Bộ Khoa Học và Công Nghệ, 2021.
[19]. Nguyên Chính Kiên, Nguyễn Tiến Cường, Nguyễn Tuấn Anh, Ứng dụng mạng nơron nhân tạo vào bài toán dự báo, Đề Tài Cơ Sở Viện Cơ Học, 2017.
[20]. Nguyễn Hồng Hải, Trần Thị Thu Thảo, Hoàng Văn Tỉnh, Tôn Thất Bảo Nam, Huỳnh Ngọc Hùng, Phân bố nhiệt độ trong mặt đường bê tông nhưa: Thực nghiệm và mô phỏng số, Tạp Chí Khoa Học và Công Nghệ - Đại Học Đà Nẵng, 20 (2022) 50–55. https://jst-ud.vn/jst-ud/article/view/7778
[21]. Trần Thị Thu Thảo, Nguyễn Hồng Hải, Nguyễn Quang Phúc, Huỳnh Ngọc Hùng, Phạm Ngọc Phương, Ảnh hưởng của các thông số khí hậu đến sự phân bố nhiệt độ trong mặt đường bê tông nhựa, Tạp Chí Khoa Học và Công Nghệ - Đại Học Đà Nẵng, 20 (2022) 1–5. https://jst-ud.vn/jst-ud/article/view/7987
[22]. Lijun Sun, Structural Behavior of Asphalt Pavements, Structural Behavior of Asphalt Pavements. (2016) 1045. https://doi.org/10.1016/b978-0-12-849908-5.00007-9
[23]. I. Adwan, A. Milad, Z.A. Memon, I. Widyatmoko, N.A. Zanuri, N.A. Memon, N.I.M. Yusoff, Asphalt pavement temperature prediction models: A review, Appl. Sci, 11 (2021) 1–19. https://doi.org/10.3390/app11093794
[24]. AASHTO Designation: T 317-04 (2013) 1., Standard Test Method for Prediction of Asphalt-Bound Pavement Layer Temperatures
[25]. Hamad I. Al-Abdul Wahhab, Ibrahim M. Asi, Rezqallah H. Ramadhan, Modeling Resilient Modulus and Temperature Correction for Saudi Roads, J. Mater. Civ. Eng, (2001) 8–11. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:4(298)

Downloads

Download data is not yet available.
Received
26/02/2023
Revised
03/04/2023
Accepted
14/04/2023
Published
15/04/2023
Type
Research Article
How to Cite
Trần Thị Thu, T., Nguyễn Hồng, H., & Nguyễn Quang, P. (1681491600). Application of artificial neural network to estimate distribution of thermal in the asphalt concrete from situ temperature monitoring data and proposed temperature model application for determination of elastic deflection pavement using Benkelman beam. Transport and Communications Science Journal, 74(3), 292-306. https://doi.org/10.47869/tcsj.74.3.5
Abstract Views
86
Total Galley Views
72