Longitudinal strain analysis in asphalt pavement under full-scale moving loads
Email:
lexuanquy@utc.edu.vn
Từ khóa:
longitudinal strain, instrumentation, accelerated full-scale experiment, strain signal.
Tóm tắt
T The roadway networks have been played a vital role in the development of all countries. The assessments of pavement conditions during their service life are therefore decisive to maintain the stable performance of the network. From this point of view, pavement instrumentation allows monitoring pavement conditions continuously and without traffic interruption. The study aims to illustrate the effectiveness of embedded strain gauges and temperature probes to follow the pavement responses with different traffic speeds, traffic loads and temperature conditions. The longitudinal strain signals are then examined with regards to representative parameters of the loading times and strain amplitude. The results show that the traffic load levels and asphalt temperature are directly responsible for the change of strain amplitudes, while those have almost no impact on loading times. Numerical simulations are also introduced to validate the applicability of both layered elastic and viscoelastic models to the strain signals observed in the field.Tài liệu tham khảo
[1]. J. F. Corte, M. T. Goux, Design of Pavement Structures - The French Technical Guide: Journal of the Transportation Research Board, 1539 (1996) 116-124. https://doi.org/10.1177/0361198196153900116
[2]. H. L. Theyse, M. De Beer, F. C. Rust, Overview of South African Mechanistic Pavement Design Method: Journal of the Transportation Research Board, 1539 (1996) 6-17. https://doi.org/10.1177/0361198196153900102
[3]. Y. H. Huang, Pavement analysis and design: Upper Saddle River, Pearson/Prentice Hall, 2004.
[4]. J. Blanc, P. Hornych, Z. Sotoodeh-Nia, C. Williams, L. Porot, S. Pouget, R. Boysen, J. P. Planche, D. L. Presti, A. Jimenez, E. Chailleux, Full-scale validation of bio-recycled asphalt mixtures for road pavements: Journal of Cleaner Production, 227 (2019) 1068–1078. https://doi.org/10.1016/j.jclepro.2019.04.273
[5]. H. Cheng, J. Liu, L. Sun, L. Liu, Critical position of fatigue damage within asphalt pavement considering temperature and strain distribution: International Journal of Pavement Engineering, (2020) 1-12. https://doi.org/10.1080/10298436.2020.1724288
[6]. M. L. Nguyen, O. Chupin, J. Blanc, J. M. Piau, P. Hornych, Y. Lefeuvre, Investigation of Crack Propagation in Asphalt Pavement Based on APT Result and LEFM Analysis: Journal of Testing and Evaluation, 48 (2020) 20180933. https://doi.org/10.1520/JTE20180933
[7]. M. H. Shafiee, L. Hashemian, A. Asefzadeh, A. Bayat, Time–Frequency Domain Analysis of Asphalt Longitudinal Strain: Journal of the Transportation Research Board, 2590 (2016) 56-64. https://doi.org/10.3141/2590-07
[8]. P. J. Yoo, I. L. Al-Qadi, M. A. Elseifi, I. Janajreh, Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces: International Journal of Pavement Engineering, 7 (2006) 73-86. https://doi.org/10.1080/10298430500516074
[9]. I. L. Al-Qadi, A. Loulizi, M. Elseifi, S. Lahouar, The Virginia Smart Road: The Impact of Pavement Instrumentation on Understanding Pavement Performance: Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 73 (2004) 427-465.
[10]. NF EN 13108-1, Bituminous mixtures - Material specifications - Part 1: Bituminous mixes, in French, 2007.
[11]. EN 12591, Bitumen and bituminous binders - Specifications for paving grade bitumens: Comite Europeen de Normalisation, 2009.
[12]. NF P94-117-2, Soils: investigation and testing - Formation level bearing capacity - Part 2: Dynamic deformation module, French standard, 2004.
[13]. EN 12697-26, Bituminous Mixtures - Test Methods for Hot Mix Asphalt - Part 26: Stiffness, London, UK: British Standards Institution, 2018.
[14]. J. F. Corte, H. Di Benedetto, Matériaux routiers bitumineux 1: description et propriétés des constituants: Hermes-Lavoisier, 2004.
[15]. Q. T. Nguyen, H. Di Benedetto, C. Sauzeat, N. Tapsoba, Time Temperature Superposition Principle Validation for Bituminous Mixes in the Linear and Nonlinear Domains: Journal of Materials in Civil Engineering, 25 (2013) 1181-1188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000658
[16]. M. L. Williams, R. F. Landel, J. D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids: Journal of the American Chemical Society, 77 (1955) 3701-3707. https://doi.org/10.1021/ja01619a008
[17]. M. L. Nguyen, J. Blanc, J. P. Kerzreho, P. Hornych, Review of glass fibre grid use for pavement reinforcement and APT experiments at IFSTTAR: Road Materials and Pavement Design, 14 (2013) 287-308. https://doi.org/10.1080/14680629.2013.774763
[18]. J. Blanc, E. Chailleux, P. Hornych, C. Williams, D. V. Presti, A. Jimenez, L. Porot, J. P. Planche, S. Pouget, Bio materials with reclaimed asphalt: from lab mixes properties to non-damaged full scale monitoring and mechanical simulation: Road Materials and Pavement Design, 20 (2019) 95-111. https://doi.org/10.1080/14680629.2019.1589557
[19]. I. Al-Qadi, Ed., Advances in Pavement Design through Full-scale Accelerated Pavement Testing: CRC Press, 2012. https://doi.org/10.1201/b13000
[20]. M. L. Nguyen, P. Hornych, M. Dauvergne, L. Lumière, C. Chazallon, S. Mouhoubi, M. Sahli, D. Doligez, E. Godard, Development of a rational design procedure based on fatigue characterisation and environmental evaluations of asphalt pavement reinforced with glass fibre grid: Road Materials and Pavement Design, 22 (2021) 672-689. https://doi.org/10.1080/14680629.2021.1906304
[21]. Q. T. Nguyen, H. Di Benedetto, C. Sauzéat, Linear and nonlinear viscoelastic behaviour of bituminous mixtures: Materials and Structures, 48 (2015) 2339-2351. https://doi.org/10.1617/s11527-014-0316-5
[22]. Q. T. Nguyen, M. L. Nguyen, H. D. Benedetto, C. Sauzeat, E. Chailleux, T. T. N. Hoang, Nonlinearity of bituminous materials for small amplitude cyclic loadings: Road Materials and Pavement Design, 20 (2019) 1571-1585. https://doi.org/10.1080/14680629.2018.1465452
[23]. J. Boussinesq, Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques, principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique mathématique et d’analyse: Impr Danel Lille, 1885.
[24]. D. M. Burmister, L. A. Palmer, E. S. Barber, T. A. Middlebrooks, The Theory of Stresses and Displacements in Layered Systems an d Applications to the Design of Airport Runways: Highway Research Board Proceedings, 1943.
[25]. S. P. Timoshenko, J. N. Goodier, Theory of Elasticity: Mcgraw-Hill Education, 1951.
[26]. A. Ahmed, S. Erlingsson, Viscoelastic Response Modelling of a Pavement under Moving Load: Transportation Research Procedia, 14 (2016) 748-757. https://doi.org/10.1016/j.trpro.2016.05.343
[27]. P. Autret, A. Baucheron de Boissoudy, J. P. Marchand, ALIZE III practice: Delft, Netherlands, 1982.
[28]. A. Chabot, O. Chupin, L. Deloffre, D. Duhamel, ViscoRoute 2.0 A: Tool for the Simulation of Moving Load Effects on Asphalt Pavement: Road Materials and Pavement Design, 11 (2010) 227-250. https://doi.org/10.1080/14680629.2010.9690274
[29]. O. Chupin, A. Chabot, J. M. Piau, D. Duhamel, Influence of sliding interfaces on the response of a layered viscoelastic medium under a moving load: International Journal of Solids and Structures, 47 (2010) 3435-3446. https://doi.org/10.1016/j.ijsolstr.2010.08.020
[30]. O. Chupin, J. M. Piau, A. Chabot, Evaluation of the structure-induced rolling resistance (SRR) for pavements including viscoelastic material layers: Materials and Structures, 46 (2013) 683-696. https://doi.org/10.1617/s11527-012-9925-z
[31]. D. Bodin, O. Chupin, E. Denneman, Viscoelastic Asphalt Pavement Simulations and Simplified Elastic Pavement Models Based on an ‘Equivalent Asphalt Modulus’ Concept: Journal of Testing and Evaluation, 45 (2017) 20160652. https://doi.org/10.1520/JTE20160652
[2]. H. L. Theyse, M. De Beer, F. C. Rust, Overview of South African Mechanistic Pavement Design Method: Journal of the Transportation Research Board, 1539 (1996) 6-17. https://doi.org/10.1177/0361198196153900102
[3]. Y. H. Huang, Pavement analysis and design: Upper Saddle River, Pearson/Prentice Hall, 2004.
[4]. J. Blanc, P. Hornych, Z. Sotoodeh-Nia, C. Williams, L. Porot, S. Pouget, R. Boysen, J. P. Planche, D. L. Presti, A. Jimenez, E. Chailleux, Full-scale validation of bio-recycled asphalt mixtures for road pavements: Journal of Cleaner Production, 227 (2019) 1068–1078. https://doi.org/10.1016/j.jclepro.2019.04.273
[5]. H. Cheng, J. Liu, L. Sun, L. Liu, Critical position of fatigue damage within asphalt pavement considering temperature and strain distribution: International Journal of Pavement Engineering, (2020) 1-12. https://doi.org/10.1080/10298436.2020.1724288
[6]. M. L. Nguyen, O. Chupin, J. Blanc, J. M. Piau, P. Hornych, Y. Lefeuvre, Investigation of Crack Propagation in Asphalt Pavement Based on APT Result and LEFM Analysis: Journal of Testing and Evaluation, 48 (2020) 20180933. https://doi.org/10.1520/JTE20180933
[7]. M. H. Shafiee, L. Hashemian, A. Asefzadeh, A. Bayat, Time–Frequency Domain Analysis of Asphalt Longitudinal Strain: Journal of the Transportation Research Board, 2590 (2016) 56-64. https://doi.org/10.3141/2590-07
[8]. P. J. Yoo, I. L. Al-Qadi, M. A. Elseifi, I. Janajreh, Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces: International Journal of Pavement Engineering, 7 (2006) 73-86. https://doi.org/10.1080/10298430500516074
[9]. I. L. Al-Qadi, A. Loulizi, M. Elseifi, S. Lahouar, The Virginia Smart Road: The Impact of Pavement Instrumentation on Understanding Pavement Performance: Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 73 (2004) 427-465.
[10]. NF EN 13108-1, Bituminous mixtures - Material specifications - Part 1: Bituminous mixes, in French, 2007.
[11]. EN 12591, Bitumen and bituminous binders - Specifications for paving grade bitumens: Comite Europeen de Normalisation, 2009.
[12]. NF P94-117-2, Soils: investigation and testing - Formation level bearing capacity - Part 2: Dynamic deformation module, French standard, 2004.
[13]. EN 12697-26, Bituminous Mixtures - Test Methods for Hot Mix Asphalt - Part 26: Stiffness, London, UK: British Standards Institution, 2018.
[14]. J. F. Corte, H. Di Benedetto, Matériaux routiers bitumineux 1: description et propriétés des constituants: Hermes-Lavoisier, 2004.
[15]. Q. T. Nguyen, H. Di Benedetto, C. Sauzeat, N. Tapsoba, Time Temperature Superposition Principle Validation for Bituminous Mixes in the Linear and Nonlinear Domains: Journal of Materials in Civil Engineering, 25 (2013) 1181-1188. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000658
[16]. M. L. Williams, R. F. Landel, J. D. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids: Journal of the American Chemical Society, 77 (1955) 3701-3707. https://doi.org/10.1021/ja01619a008
[17]. M. L. Nguyen, J. Blanc, J. P. Kerzreho, P. Hornych, Review of glass fibre grid use for pavement reinforcement and APT experiments at IFSTTAR: Road Materials and Pavement Design, 14 (2013) 287-308. https://doi.org/10.1080/14680629.2013.774763
[18]. J. Blanc, E. Chailleux, P. Hornych, C. Williams, D. V. Presti, A. Jimenez, L. Porot, J. P. Planche, S. Pouget, Bio materials with reclaimed asphalt: from lab mixes properties to non-damaged full scale monitoring and mechanical simulation: Road Materials and Pavement Design, 20 (2019) 95-111. https://doi.org/10.1080/14680629.2019.1589557
[19]. I. Al-Qadi, Ed., Advances in Pavement Design through Full-scale Accelerated Pavement Testing: CRC Press, 2012. https://doi.org/10.1201/b13000
[20]. M. L. Nguyen, P. Hornych, M. Dauvergne, L. Lumière, C. Chazallon, S. Mouhoubi, M. Sahli, D. Doligez, E. Godard, Development of a rational design procedure based on fatigue characterisation and environmental evaluations of asphalt pavement reinforced with glass fibre grid: Road Materials and Pavement Design, 22 (2021) 672-689. https://doi.org/10.1080/14680629.2021.1906304
[21]. Q. T. Nguyen, H. Di Benedetto, C. Sauzéat, Linear and nonlinear viscoelastic behaviour of bituminous mixtures: Materials and Structures, 48 (2015) 2339-2351. https://doi.org/10.1617/s11527-014-0316-5
[22]. Q. T. Nguyen, M. L. Nguyen, H. D. Benedetto, C. Sauzeat, E. Chailleux, T. T. N. Hoang, Nonlinearity of bituminous materials for small amplitude cyclic loadings: Road Materials and Pavement Design, 20 (2019) 1571-1585. https://doi.org/10.1080/14680629.2018.1465452
[23]. J. Boussinesq, Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques, principalement au calcul des déformations et des pressions que produisent, dans ces solides, des efforts quelconques exercés sur une petite partie de leur surface ou de leur intérieur: mémoire suivi de notes étendues sur divers points de physique mathématique et d’analyse: Impr Danel Lille, 1885.
[24]. D. M. Burmister, L. A. Palmer, E. S. Barber, T. A. Middlebrooks, The Theory of Stresses and Displacements in Layered Systems an d Applications to the Design of Airport Runways: Highway Research Board Proceedings, 1943.
[25]. S. P. Timoshenko, J. N. Goodier, Theory of Elasticity: Mcgraw-Hill Education, 1951.
[26]. A. Ahmed, S. Erlingsson, Viscoelastic Response Modelling of a Pavement under Moving Load: Transportation Research Procedia, 14 (2016) 748-757. https://doi.org/10.1016/j.trpro.2016.05.343
[27]. P. Autret, A. Baucheron de Boissoudy, J. P. Marchand, ALIZE III practice: Delft, Netherlands, 1982.
[28]. A. Chabot, O. Chupin, L. Deloffre, D. Duhamel, ViscoRoute 2.0 A: Tool for the Simulation of Moving Load Effects on Asphalt Pavement: Road Materials and Pavement Design, 11 (2010) 227-250. https://doi.org/10.1080/14680629.2010.9690274
[29]. O. Chupin, A. Chabot, J. M. Piau, D. Duhamel, Influence of sliding interfaces on the response of a layered viscoelastic medium under a moving load: International Journal of Solids and Structures, 47 (2010) 3435-3446. https://doi.org/10.1016/j.ijsolstr.2010.08.020
[30]. O. Chupin, J. M. Piau, A. Chabot, Evaluation of the structure-induced rolling resistance (SRR) for pavements including viscoelastic material layers: Materials and Structures, 46 (2013) 683-696. https://doi.org/10.1617/s11527-012-9925-z
[31]. D. Bodin, O. Chupin, E. Denneman, Viscoelastic Asphalt Pavement Simulations and Simplified Elastic Pavement Models Based on an ‘Equivalent Asphalt Modulus’ Concept: Journal of Testing and Evaluation, 45 (2017) 20160652. https://doi.org/10.1520/JTE20160652
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
19/10/2021
Nhận bài sửa
29/11/2021
Chấp nhận đăng
17/02/2022
Xuất bản
15/05/2022
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Le Xuan, Q., Nguyen Mai, L., Nguyen Quang, T., & Hornych, P. (7600). Longitudinal strain analysis in asphalt pavement under full-scale moving loads. Tạp Chí Khoa Học Giao Thông Vận Tải, 73(4), 359-370. https://doi.org/10.47869/tcsj.73.4.2
Số lần xem tóm tắt
177
Số lần xem bài báo
145