Monitoring the temperature variations and simulation of their effects on stress distribution in concrete box-girder bridges at the service stage
Email:
nguyenhuycuong@utc.edu.vn
Keywords:
monitoring, simulation, temperature variations, solar radiation, box girder, reinforced concrete.
Abstract
Temperature is one of the important reasons causing the cracks on the bridge structure. This paper presents an overview of the short-term monitoring of the temperature variations on concrete box-girder bridges in Vietnam. The monitoring works have just been conducted at the service stage in a period of over six months. Based on the field measurements on three box-girder bridges, the heat flux and temperature-induced stresses of the concrete box girder sections were simulated utilizing the finite element method. It can be concluded that the temperature distribution under solar radiation and the thermal load significantly affect bridges structures, which have not been considered in the current bridge design standards. In detail, for the box-girder bridge, the positive temperature gradients were displayed in both vertical and horizontal directions. The negative temperature gradients were also shown in all directions of the girder sections. It can be found that the temperature-induced tension stresses in the slabs and webs of sections are larger than ones induced by live load, leading to cracks on the concrete.References
[1]. F. Leonhardt, Crack control in concrete structures, IABSE Surveys No. S-4/77, Intemational Association for Bridge and Structural Engineering, Zurich, 1977.
[2]. R. A. Imbsen, R. A. Vandershaf, Thermal effects in concrete bridge superstructure, NCHRP Report 276, 1985.
[3]. J. Hejnic, Effect of temperature changes on prestressed concrete bridges, in: 7th F.I.P. Congress, New York, 1974.
[4]. S. R. Abid, N. Taysi, M. Ozakca, Experimental analysis of temperature gradients in concrete box-girders, Construction and building materials, 106 (2016) 523-532. https://doi.org/10.1016/j.conbuildmat.2015.12.144
[5]. B. Gu, Z. J. Chen, X.D. Chen, Temperature gradients in concrete box girder bridge under effect of cold wave, Journal of central south university, 21 (2014) 1227-1241 https://doi.org/10.1007/s11771¬014¬2057¬6
[6]. F. Kehlbeck, Einfluss der Sonnenstrahlung bei Brückenbauwerken, Werner-Verlag, Duesseldorf, Germany, 1975.
[7]. M. M. Elbadry, A. Ghali, Temperature Variations in Concrete Bridges, Journal of Structural Engineering, 109 (1983) 2355-2374. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:10(2355)
[8]. Y. Lu, D. Li, K. Wang, S. Jia, Study on solar radiation and the extreme thermal effect on concrete box girder bridges, Applied sciences, 11 (2021) 6332. https://doi.org/10.3390/app11146332
[9]. COMSOL Inc, COMSOL Multiphysics reference manual, version 6.0, www.comsol.com.
[10]. A. Iman, S. Payam, F. B. Zahiruddin, B. M. Norhayati, Thermal conductivity of concrete - a review, Journal of building engineering, 20 (2018) 81-93. https://doi.org/10.1016/j.jobe.2018.07.002
[11]. M. P. Collins, D. Mitchell, Prestressed concrete structures, Response Publications, 1997.
[12]. Bộ Khoa học và Công nghệ, Bộ Giao thông vận tải, TCVN 11823 - 3:2017, 2017.
[13]. Bộ Xây dựng, QCVN 02: 2009/BXD, Quy chuẩn kỹ thuật quốc gia số liệu điều kiện tự nhiên dùng trong xây dựng, 2009.
[2]. R. A. Imbsen, R. A. Vandershaf, Thermal effects in concrete bridge superstructure, NCHRP Report 276, 1985.
[3]. J. Hejnic, Effect of temperature changes on prestressed concrete bridges, in: 7th F.I.P. Congress, New York, 1974.
[4]. S. R. Abid, N. Taysi, M. Ozakca, Experimental analysis of temperature gradients in concrete box-girders, Construction and building materials, 106 (2016) 523-532. https://doi.org/10.1016/j.conbuildmat.2015.12.144
[5]. B. Gu, Z. J. Chen, X.D. Chen, Temperature gradients in concrete box girder bridge under effect of cold wave, Journal of central south university, 21 (2014) 1227-1241 https://doi.org/10.1007/s11771¬014¬2057¬6
[6]. F. Kehlbeck, Einfluss der Sonnenstrahlung bei Brückenbauwerken, Werner-Verlag, Duesseldorf, Germany, 1975.
[7]. M. M. Elbadry, A. Ghali, Temperature Variations in Concrete Bridges, Journal of Structural Engineering, 109 (1983) 2355-2374. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:10(2355)
[8]. Y. Lu, D. Li, K. Wang, S. Jia, Study on solar radiation and the extreme thermal effect on concrete box girder bridges, Applied sciences, 11 (2021) 6332. https://doi.org/10.3390/app11146332
[9]. COMSOL Inc, COMSOL Multiphysics reference manual, version 6.0, www.comsol.com.
[10]. A. Iman, S. Payam, F. B. Zahiruddin, B. M. Norhayati, Thermal conductivity of concrete - a review, Journal of building engineering, 20 (2018) 81-93. https://doi.org/10.1016/j.jobe.2018.07.002
[11]. M. P. Collins, D. Mitchell, Prestressed concrete structures, Response Publications, 1997.
[12]. Bộ Khoa học và Công nghệ, Bộ Giao thông vận tải, TCVN 11823 - 3:2017, 2017.
[13]. Bộ Xây dựng, QCVN 02: 2009/BXD, Quy chuẩn kỹ thuật quốc gia số liệu điều kiện tự nhiên dùng trong xây dựng, 2009.
Downloads
Download data is not yet available.

Received
21/02/2022
Revised
14/03/2022
Accepted
21/03/2022
Published
15/04/2022
Type
Research Article
How to Cite
Ngô Đăng, Q., Nguyễn Huy, C., Mai Đình, L., Đinh Hữu, T., & Lê Minh, C. (1649955600). Monitoring the temperature variations and simulation of their effects on stress distribution in concrete box-girder bridges at the service stage. Transport and Communications Science Journal, 73(3), 253-267. https://doi.org/10.47869/tcsj.73.3.4
Abstract Views
270
Total Galley Views
204