Xây dựng công thức dự báo hệ số thấm của bê tông rỗng dựa trên định hướng dữ liệu

  • Vũ Thái Sơn

    Khoa Cầu Đường, Trường Đại học Xây dựng Hà Nội, Số 55 Giải Phóng, Hà Nội, Việt Nam
  • Vũ Việt Hưng

    Phân hiệu tại Thành phố Hồ Chí Minh, Trường Đại học Giao thông vận tải, Số 450-451 Lê Văn Việt, phường Tăng Nhơn Phú A, thành phố Thủ Đức, Thành phố Hồ Chí Minh, Việt Nam
  • Nguyễn Tuấn Cường

    Phân hiệu tại Thành phố Hồ Chí Minh, Trường Đại học Giao thông vận tải, Số 450-451 Lê Văn Việt, phường Tăng Nhơn Phú A, thành phố Thủ Đức, Thành phố Hồ Chí Minh, Việt Nam
  • Trương Đình Thảo Anh

    Khoa Kỹ thuật Công trình, Trường Đại học Công nghệ Sài Gòn, Số 180 Cao Lỗ, phường 4, quận 8, Thành phố Hồ Chí Minh, Việt Nam
  • Trần Bảo Việt

    Trường Đại học Giao thông vận tải, Số 3 Cầu Giấy, Hà Nội, Việt Nam
Email: viettb@utc.edu.vn
Từ khóa: hệ số thấm, độ rỗng, dự báo, dữ liệu, bê tông rỗng, mô hình lý thuyết.

Tóm tắt

Việc xác định hệ số thấm đóng vai trò quan trọng trong quá trình thiết kế thành phần của bê tông xi măng rỗng nhằm đảm bảo khả năng thoát nước của lớp mặt phủ. Do sự phức tạp của cấu trúc bê tông rỗng, các mô hình dự báo hệ số thấm cho vật liệu này chưa thực sự hiệu quả. Vì vậy, bài báo có mục tiêu thiết lập một mô hình giải tích đơn giản nhằm dự báo hệ số thấm của bê tông xi măng rỗng. Để thực hiện mục tiêu này, hai nội dung chính của nghiên cứu đã được triển khai như sau: (1) thiết lập dạng xấp xỉ của phương trình thấm Kozeny– Carman cho vật liệu bê tông xi măng rỗng; (2) xây dựng tập dữ liệu gồm 195 mẫu bê tông rỗng với các tỷ lệ hỗn hợp khác nhau được tổng hợp từ các tài liệu quốc tế mở và có uy tín để chuẩn hóa các tham số của phương trình. Thông qua các ví dụ cho các kết quả thí nghiệm độc lập, mô hình đề xuất chứng tỏ được hiệu quả trong việc dự báo hệ số thấm của bê tông xi măng rỗng dựa vào tỉ lệ thành phần vật liệu.

Tài liệu tham khảo

[1]. B. Ferguson, Porous Pavements, 0 ed., CRC Press, 2005.
[2]. R. Zhong, Z. Leng, C. Poon, Research and application of pervious concrete as a sustainable pavement material: A state-of-the-art and state-of-the-practice review, Constr. Build. Mater., 183 (2018) 544–553. https://doi.org/10.1016/j.conbuildmat.2018.06.131
[3]. A. Abdelhady, L. Hui, H. Zhang, Comprehensive study to accurately predict the water permeability of pervious concrete using constant head method, Constr. Build. Mater., 308 (2021) 125046. https://doi.org/10.1016/j.conbuildmat.2021.125046
[4]. O. Deo, N. Neithalath, Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features, Mater. Sci. Eng. A., 528 (2010) 402–412. https://doi.org/10.1016/j.msea.2010.09.024
[5]. R. Pieralisi, S.H.P. Cavalaro, A. Aguado, Advanced numerical assessment of the permeability of pervious concrete, Cem. Concr. Res., 102 (2017) 149–160. https://doi.org/10.1016/j.cemconres.2017.09.009
[6]. L. Akand, M. Yang, Z. Gao, Characterization of pervious concrete through image based micromechanical modeling, Constr. Build. Mater., 114 (2016) 547–555. https://doi.org/10.1016/j.conbuildmat.2016.04.005
[7]. G.P. Ong, A. Jagadeesh, Y.-M. Su, Effect of pore network characteristics on non-Darcy permeability of pervious concrete mixture, Constr. Build. Mater., 259 (2020) 119859. https://doi.org/10.1016/j.conbuildmat.2020.119859
[8]. J. Sun, J. Zhang, Y. Gu, Y. Huang, Y. Sun, G. Ma, Prediction of permeability and unconfined compressive strength of pervious concrete using evolved support vector regression, Constr. Build. Mater., 207 (2019) 440–449. https://doi.org/10.1016/j.conbuildmat.2019.02.117
[9]. J. Huang, T. Duan, Y. Zhang, J. Liu, J. Zhang, Y. Lei, Predicting the Permeability of Pervious Concrete Based on the Beetle Antennae Search Algorithm and Random Forest Model, Adv. Civ. Eng., 2020 (2020) 8863181. https://doi.org/10.1155/2020/8863181
[10]. X. Yang, J. Liu, H. Li, Q. Ren, Performance and ITZ of pervious concrete modified by vinyl acetate and ethylene copolymer dispersible powder, Constr. Build. Mater., 235 (2020) 117532. https://doi.org/10.1016/j.conbuildmat.2019.117532
[11]. A. Rezaei Lori, A. Bayat, A. Azimi, Influence of the replacement of fine copper slag aggregate on physical properties and abrasion resistance of pervious concrete, Road Mater. Pavement Des., (2019) 1–17. https://doi.org/10.1080/14680629.2019.1648311
[12]. H. Zhou, H. Li, A. Abdelhady, X. Liang, H. Wang, B. Yang, Experimental investigation on the effect of pore characteristics on clogging risk of pervious concrete based on CT scanning, Constr. Build. Mater., 212 (2019) 130–139. https://doi.org/10.1016/j.conbuildmat.2019.03.310
[13]. W. Yeih, J.J. Chang, The influences of cement type and curing condition on properties of pervious concrete made with electric arc furnace slag as aggregates, Constr. Build. Mater., 197 (2019) 813–820. https://doi.org/10.1016/j.conbuildmat.2018.08.178
[14]. K.S. Elango, V. Revathi, Fal-G Binder Pervious Concrete, Constr. Build. Mater., 140 (2017) 91–99. https://doi.org/10.1016/j.conbuildmat.2017.02.086
[15]. A. Ibrahim, E. Mahmoud, M. Yamin, V.C. Patibandla, Experimental study on Portland cement pervious concrete mechanical and hydrological properties, Constr. Build. Mater., 50 (2014) 524–529. https://doi.org/10.1016/j.conbuildmat.2013.09.022
[16]. S. Asadi, M.M. Hassan, J.T. Kevern, T.D. Rupnow, Development of Photocatalytic Pervious Concrete Pavement for Air and Storm Water Improvements, Transp. Res. Rec., 2290 (2012) 161–167. https://doi.org/10.3141/2290-21
[17]. X. Shu, B. Huang, H. Wu, Q. Dong, E.G. Burdette, Performance comparison of laboratory and field produced pervious concrete mixtures, Constr. Build. Mater., 25 (2011) 3187–3192. https://doi.org/10.1016/j.conbuildmat.2011.03.002
[18]. J. Kevern, V. Schaefer, K. Wang, M. Suleiman, Pervious Concrete Mixture Proportions for Improved Freeze-Thaw Durability, J. ASTM Int., 5 (2008) 1–12. https://doi.org/10.1520/JAI101320
[19]. K. Wang, V. Schaefer, J. Kevern, Development of Mix Proportion for Functional and Durable Pervious Concrete, in: 2006.
[20]. A.K. Chandrappa, K.P. Biligiri, Comprehensive investigation of permeability characteristics of pervious concrete: A hydrodynamic approach, Constr. Build. Mater., 123 (2016) 627–637. https://doi.org/10.1016/j.conbuildmat.2016.07.035
[21]. Y. Qin, H. Yang, Z. Deng, J. He, Water Permeability of Pervious Concrete Is Dependent on the Applied Pressure and Testing Methods, Adv. Mater. Sci. Eng., 2015 (2015) 404136. https://doi.org/10.1155/2015/404136
[22]. F. Yu, D. Sun, M. Hu, J. Wang, Study on the pores characteristics and permeability simulation of pervious concrete based on 2D/3D CT images, Constr. Build. Mater., 200 (2019) 687–702. https://doi.org/10.1016/j.conbuildmat.2018.12.135
[23]. V.V. Hung, S.-Y. Seo, H.-W. Kim, G.-C. Lee, Permeability and Strength of Pervious Concrete According to Aggregate Size and Blocking Material, Sustainability, 13 (2021). https://doi.org/10.3390/su13010426
[24]. ACI Committee 522, 522R-10: Report on Pervious Concrete, Tech. Doc, 2010.
[25]. Kozeny, J., Uber kapillare Leitung des Wassers im Boden, R. Acad. Sci., Vienna Proc Cl. I., 136 (1927) 271–306.
[26]. P.C. Carman, Fluid flow through granular beds, Chem. Eng. Res. Des., 75 (1997) S32–S48. https://doi.org/10.1016/S0263-8762(97)80003-2
[27]. P.Crosbie. Carman, Flow of gases through porous media., Academic Press, New York, 1956.
[28]. F. Montes, L. Haselbach, Measuring Hydraulic Conductivity in Pervious Concrete, Environ. Eng. Sci., 23 (2006) 960–969. https://doi.org/10.1089/ees.2006.23.960
[29]. G. Mavko, A. Nur, The effect of a percolation threshold in the Kozeny‐Carman relation, Geophysics., 62 (1997) 1480–1482. https://doi.org/10.1190/1.1444251

Tải xuống

Chưa có dữ liệu thống kê
Nhận bài
15/12/2021
Nhận bài sửa
18/01/2022
Chấp nhận đăng
07/02/2022
Xuất bản
15/02/2022
Chuyên mục
Công trình khoa học