Modeling of crack propagation in multi-phase structure by phase field method with interfacial damage
Email:
thanhvb@utc.edu.vn
Keywords:
phase field method, crack, supplemental sub-function, multi-phase structure, interfacial damage.
Abstract
In recent years, the phase field method has become a reliable and effective simulation tool to predict the damage in structures containing construction materials. In multi-phase structures, the interface shape between material phases is often very complex and random, which makes it difficult to determine the boundaries of these phases, leading to inaccurate simulation results. Therefore, the objectives of this paper: (i) use the phase field method to simulate the crack initiation and propagation in structures containing component multi-phase with the interaction between the bulk damage in the interior of these phases (described by the phase field variable d) and the interfacial damage (represented by a supplemental fixed scalar phase field variable ); (ii) build a supplemental sub-function to handle image formats of structure with each color representing a material phase, based on the principle that one color of image will have a representative range of numbers to determine the interface shape. The obtained results in this paper show that the current phase field method combined with the supplemental sub-function can accurately simulate the damage of structures containing component multi-phase.References
[1]. C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-independent crack
propagation: robust algorithmic implementation based on operator splits, Comput. Methods
Appl. Mech. Eng, 199 (2010) 2765-2778. https://doi.org/10.1016/j.cma.2010.04.011
[2]. T.T. Nguyen, J. Yvonnet, Q.Z. Zhu, M. Bornert, C. Chateau, A phase field method to simulate
crack nucleation and propagation in strongly heterogeneous materials from direct imaging of
their microstructure, Eng. Fract. Mech, 139 (2015) 18-39. https://doi.org/10.1016/j.engfracmech.2015.03.045
[3]. T.T. Nguyen, J. Rethore, M.C. Bainetto, Phase field modelling of anisotropic crack propagation, Eur. J. Mech. A/Solids, 65 (2017) 279-288. https://doi.org/10.1016/j.euromechsol.2017.05.002
[4]. Vũ Bá Thành, Ngô Văn Thức, Bùi Tiến Thành, Trần Thế Truyền, Đỗ Anh Tú, Mô phỏng sự hình thành và lan truyền vết nứt trong dầm bê tông cường độ cao có chất kết dính bổ sung nano-silica bằng phương pháp phase field, Tạp chí khoa học Giao thông vận tải, 72 (2021) 672-686. https://doi.org/10.47869/tcsj.72.6.1
[5]. Y.S. Wang, G.Y. Huang, D. Gross, On the mechanical modeling of functionally graded interfacial zone with a griffith crack: plane deformation, J. Appl. Mech, 70 (2003) 676-680. https://doi.org/10.1115/1.1598476
[6]. G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, J. Appl. Math. Mech, 23 (1959) 622–636.
[7]. D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8 (1960) 100–104. https://doi.org/10.1016/0022-5096(60)90013-2
[8]. A. Needleman, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech, 54 (1987) 525–531. https://doi.org/10.1115/1.3173064
[9]. V. Tvergaard, J.W. Hutchinson, The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solids, 41 (1993) 1119–1135. https://doi.org/10.1016/0022-5096(93)90057-M
[10]. G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials, Int. J. Solids Struct, 33 (1996) 2899–2938. https://doi.org/10.1016/0020-7683(95)00255-3
[11]. T.T. Nguyen, J. Yvonnet, Q.Z. Zhu, M. Bornert, C. Chateau, A phase-field method for
computational modeling of interfacial damage interacting with crack propagation
in realistic microstructures obtained by microtomography, Comput. Methods Appl.
Mech. Eng, 312 (2016) 567–95. https://doi.org/10.1016/j.cma.2015.10.007
[12]. G.A. Francfort, J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J.
Mech. Phys. Solids, 46 (1998) 1319-1342. https://doi.org/10.1016/S0022-5096(98)00034-9
[13]. C.V. Verhoosel, R. de Borst, A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg, 96 (2013) 43–62. https://doi.org/10.1002/nme.4553
[14]. Phần mềm Matlab 2014b. https://www.mathworks.com
propagation: robust algorithmic implementation based on operator splits, Comput. Methods
Appl. Mech. Eng, 199 (2010) 2765-2778. https://doi.org/10.1016/j.cma.2010.04.011
[2]. T.T. Nguyen, J. Yvonnet, Q.Z. Zhu, M. Bornert, C. Chateau, A phase field method to simulate
crack nucleation and propagation in strongly heterogeneous materials from direct imaging of
their microstructure, Eng. Fract. Mech, 139 (2015) 18-39. https://doi.org/10.1016/j.engfracmech.2015.03.045
[3]. T.T. Nguyen, J. Rethore, M.C. Bainetto, Phase field modelling of anisotropic crack propagation, Eur. J. Mech. A/Solids, 65 (2017) 279-288. https://doi.org/10.1016/j.euromechsol.2017.05.002
[4]. Vũ Bá Thành, Ngô Văn Thức, Bùi Tiến Thành, Trần Thế Truyền, Đỗ Anh Tú, Mô phỏng sự hình thành và lan truyền vết nứt trong dầm bê tông cường độ cao có chất kết dính bổ sung nano-silica bằng phương pháp phase field, Tạp chí khoa học Giao thông vận tải, 72 (2021) 672-686. https://doi.org/10.47869/tcsj.72.6.1
[5]. Y.S. Wang, G.Y. Huang, D. Gross, On the mechanical modeling of functionally graded interfacial zone with a griffith crack: plane deformation, J. Appl. Mech, 70 (2003) 676-680. https://doi.org/10.1115/1.1598476
[6]. G.I. Barenblatt, The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, J. Appl. Math. Mech, 23 (1959) 622–636.
[7]. D.S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8 (1960) 100–104. https://doi.org/10.1016/0022-5096(60)90013-2
[8]. A. Needleman, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech, 54 (1987) 525–531. https://doi.org/10.1115/1.3173064
[9]. V. Tvergaard, J.W. Hutchinson, The influence of plasticity on mixed mode interface toughness, J. Mech. Phys. Solids, 41 (1993) 1119–1135. https://doi.org/10.1016/0022-5096(93)90057-M
[10]. G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials, Int. J. Solids Struct, 33 (1996) 2899–2938. https://doi.org/10.1016/0020-7683(95)00255-3
[11]. T.T. Nguyen, J. Yvonnet, Q.Z. Zhu, M. Bornert, C. Chateau, A phase-field method for
computational modeling of interfacial damage interacting with crack propagation
in realistic microstructures obtained by microtomography, Comput. Methods Appl.
Mech. Eng, 312 (2016) 567–95. https://doi.org/10.1016/j.cma.2015.10.007
[12]. G.A. Francfort, J.J. Marigo, Revisiting brittle fracture as an energy minimization problem, J.
Mech. Phys. Solids, 46 (1998) 1319-1342. https://doi.org/10.1016/S0022-5096(98)00034-9
[13]. C.V. Verhoosel, R. de Borst, A phase-field model for cohesive fracture, Internat. J. Numer. Methods Engrg, 96 (2013) 43–62. https://doi.org/10.1002/nme.4553
[14]. Phần mềm Matlab 2014b. https://www.mathworks.com
Downloads
Download data is not yet available.

Received
16/07/2021
Revised
27/09/2021
Accepted
01/10/2021
Published
15/10/2021
Type
Research Article
How to Cite
Vũ Bá, T., Trần Anh, T., & Nguyễn Đình, H. (1634230800). Modeling of crack propagation in multi-phase structure by phase field method with interfacial damage. Transport and Communications Science Journal, 72(8), 893-907. https://doi.org/10.47869/tcsj.72.8.4
Abstract Views
410
Total Galley Views
615