Research on the effects of solvent on the nano composite process SiO2/PPy

  • Hoan Lai Thi

    University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam
  • Nga Tran Thuy

    University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam
Email: laithihoan@utc.edu.vn
Keywords: Materials, nanocomposite, silica, polyppyrole, corrosion.

Abstract

The silica/polypyrrole nanocomposite (SiO2/PPy) material has widely been used in the World and Vietnam as well. Here, the material has been synthesized using in situ micro-emulsion method for application in organic coating to protect against corrosion for CT3 steel. The influence of the solvent on the characteristics and properties of SiO2/PPy nanocpmpozite has been studied. Our research results show that synthetic solvents do not much affect the structure and morphology of the synthesized materials. Nanocompozite SiO2/PPy-W synthesized in a water solvent has the highest conductivity (σ = 0.19 S.cm-1), which is higher than the electrical conductivity of SiO2/PPy-EW and SiO2/PPy-E synthesized in alcohol/water and alcohol solvent (0.14 S.cm-1 and 0.11 S.cm-1), respectively.

References

[1]. P. Richard, There is plenty of room at the bottom in Minituarization, Rienhold, New York, 1960.
[2]. N. T. Dung, Nghiên cứu tổng hợp điện hóa màng polypyrrole trực tiếp trên nền thép tráng kẽm, Tạp chí khoa học và công nghệ, 43 (2005) 54-59.
[3]. T. A. Trúc và các cộng sự, Lớp phủ bảo vệ chống ăn mòn trên cơ sở epoxy với sự có mặt của polyindol lai tạp axit indol-3butyric, Tạp chí hóa học, 45 (2007) 542-547. http://vjs.ac.vn/index.php/vjchem/article/view/4786/4513
[4]. G. Mengoli et al., Anodic synthesis of polyaniline coating onto Fe sheets, Journal of Applied Polymer Science, 26 (1981) 4247-4257. https://doi.org/10.1002/app.1981.070261224
[5]. D. W. DeBerry, Modification of the Electrochemical and Corrosion Behavior of Stainless steel with an Electroactive coating, Journal of Electrochemical Society, 132 (1985) 1022-1026. https://doi.org/10.1149/1.2114008
[6]. N. V. Krstajic et al., Corrosion protection of mild steel by polypyrrole coatings in acid sulfate solutions, Electrochimica Acta, 42 (1997) 1685-1691. https://doi.org/10.1016/S0013-4686(96)00313-1
[7]. G. Ruhi et al., Corrosion Resistant Polypyrrole/Flyash Composite Coatings Designed for Mild Steel Substrate, American Journal of Polymer Science, 5 (2015) 18-27. https://www.researchgate.net/publication/273576868_Corrosion_Resistant_PolypyrroleFlyash_Composite_Coatings_Designed_for_Mild_Steel_Substrate
[8]. H. N. T. Le et al., Corrosion protection and conducting polymers: polypyrrole films on iron, Electrochimica Acta, 46 (2001) 4259-4272. https://doi.org/10.1016/S0013-4686(01)00699-5
[9]. N. T. Dung, Trùng hợp điện hóa màng bảo vệ polypyrrole trực tiếp trên nền thép cacbon sử dụng salicylat làm ion đối, Tạp chí hóa học, 45 (2007) 18-23. http://vjs.ac.vn/index.php/vjchem/article/view/4704/4432
[10]. T. V. Tân, Polyme dẫn điện và những áp dụng thực tế, Vietsciences, 2007.
[11]. D. J. Yoon, Y. D. Kim, Synthesis and electrotheological behavior of sterically stabilized polypyrrole-silica-methylcallulose nanocomposite suspension, Journal of Colloid and Interface Science, 303 (2006) 573-578. http://doi.org/10.1016/j.jcis.2006.07.051
[12]. R. Gangopadhyay, A. De, Conducting Polymer Nanocomposites: A Brief Overview, Chemistry of Materials, 1 (2001) 608-622. https://doi.org/10.1021/cm990537f
[13]. W. G. Schmidt, K. Seino, Pyrrole (C4H4NH) and polypyrrole functionalized silicon surfaces calculated from first principles, Surface Review and Letters, 10 (2003) 221-226. https://doi.org/10.1142/S0218625X03004901
[14]. H. Shirakawa et al., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x, Journal of the Chemical Society-Chemical Communications, 16 (1977) 578-580. https://doi.org/10.1039/C39770000578
[15]. Q. Cheng et al., Electrorheological properties of new mesoporous material with conducting polypyrrole in mesoporous silica, Microporous and Mesoporous Materials, 94 (2006) 193-199. https://doi.org/10.1016/j.micromeso.2006.03.039
[16]. I. A. Rahman, V. Padavettan, Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites-A Review, Journal of Nanomaterials, 2012 (2012) 15. https://doi.org/10.1155/2012/132424
[17]. J. J. Chrusciel, L. Ślusarski, Synthesis of nano silica by the sol-gel method and its activity toward polymers, Materials Science, 21 (2003) 461-469. https://www.researchgate.net/publication/286656983_Synthesis_of_nanosilica_by_the_sol-gel_method_and_its_activity_toward_polymers
[18]. K. R. Martin, The chemistry of silica and its potential health benefits, Journal of Nutrition, health & aging, 11 (2007) 94-97. https://www.researchgate.net/publication/6392416_The_chemistry_of_silica_and_its_potential_health_benefits
[19]. Q. Cheng et al., Synthesis and characterization of new mesoporous material with conducting polypyrrole confined in mesoporous silica, Materials Chemistry and Physics, 98 (2006) 504-508, https://doi.org/10.1016/j.matchemphys.2005.09.074
[20]. L. Ruangchuay, J. Schwank, A. Sirivat, Surface degradation of α-naphthalene sulfonate-doped polypyrrole during XPS characterization, Applied Surface Science, 199 (2002) 128-137. https://doi.org/10.1016/S0169-4332(02)00564-0
[21]. C. Malitesta et al., New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling, Journal of Electron Spectroscopy and Related Phenomena, 76 (1995) 629-634. https://doi.org/10.1016/0368-2048(95)02438-7

Downloads

Download data is not yet available.
Received
11/12/2020
Revised
18/02/2021
Accepted
23/02/2021
Published
15/04/2021
Type
Research Article
How to Cite
Lại Thị, H., & Trần Thúy, N. (9600). Research on the effects of solvent on the nano composite process SiO2/PPy . Transport and Communications Science Journal, 72(3), 251-263. https://doi.org/10.47869/tcsj.72.3.2
Abstract Views
92
Total Galley Views
169