A state-of-the art review of tensile behavior of the textile-reinforced concrete composite
Email:
tranmanhtien@humg.edu.vn
Từ khóa:
Textile-reinforced concrete (TRC), reinforcement textile, cementitious matrix, strain-hardening behavior, cracking stress, ultimate strength.
Tóm tắt
Over the past two decades, textile-reinforced concrete (TRC) materials have been increasingly and widely used for the strengthening/reinforcement of civil engineering works. Thanks to their many advantages as the durability, considerable bond strength with the reinforced concrete (RC) members, best recycling conditions, the TRC materials are considered as an optimal alternative solution to substitute the traditional strengthening and reinforcing materials FRP (Fiber-Reinforced Polymer). The mechanical behavior of TRC composite has been characterized in previous experimental studies. This paper presents a state-of-the-art review of the mechanical behavior of TRC composite under tensile loading. By inheriting from previous review studies, this paper updates the experimental studies on the tensile behavior of TRC composite in the last decade. The review addresses, firstly the mechanical properties of constituent materials in TRC as reinforcement textile, cementitious matrix, and textile/matrix interface. Secondly, it addresses the tensile behavior of TRC composite, including the characterization methods as well as analyses of its strain-hardening behavior with different phases. The paper then discusses the main factors which influence the mechanical behavior of TRC materials in the available experimental studies. Finally, the conclusion of this review terminates this paper.Tài liệu tham khảo
[1] V. Mechtcherine, Novel cement-based composites for the strengthening and repair of concrete structures, Constr. Build. Mater., 41 (2013) 365-373. https://doi.org/10.1016/j.conbuildmat.2012.11.117
[2] M. Butler, V. Mechtcherine, M. Lieboldt, Application of Textile-Reinforced Concrete (TRC) for structural strengthening and in prefabrication, Advances in Cement-Based Materials, (2009). https://www.taylorfrancis.com/ (accessed Apr. 01, 2020).
[3] M. Mobasher, V. Dey, Z. Cohen, A. Peled, Correlation of constitutive response of hybrid textile reinforced concrete from tensile and flexural tests, Cem. Concr. Compos., 53 (2014) 148-161. https://doi.org/10.1016/j.cemconcomp.2014.06.004
[4] M. T. Tran, Caractérisation expérimentale et modélisation numérique du comportement thermomécanique à haute température des matériaux composites renforcés par des fibres, phdthesis, Université de Lyon, 2019.
[5] R. Mansur de Castro Silva, F. de Andrade Silva, Carbon textile reinforced concrete: materials and structural analysis, Mater. Struct., 53 (2020) 17. https://doi.org/10.1617/s11527-020-1448-4.
[6] R. Contamine, Contribution à l’étude du comportement mécanique de composites textile-mortier : application à la réparation et/ou renforcement de poutres en béton armé vis-à-vis de l’effort tranchant, phdthesis, Université Claude Bernard - Lyon I, 2011.
[7] B. T. Truong, Formulation, performances mécaniques, et applications, d’un matériau TRC pour le renforcement et la réparation de structures en béton/et béton armé: Approches expérimentale et numérique, phdthesis, Université de Lyon, 2016.
[8] L. N. Koutas, Z. Tetta, D. A. Bournas, T. C. Triantafillou, Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review, J. Compos. Constr., 23 (2019) 03118001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000882
[9] D. A. Pohoryles, D. A. Bournas, Seismic retrofit of infilled RC frames with textile reinforced mortars: State-of-the-art review and analytical modelling, Compos. Part B Eng., 183 (2020) 107702. https://doi.org/10.1016/j.compositesb.2019.107702
[10] K. T. Q. Nguyen, S. Navaratnam, P. Mendis, K. Zhang, J. Barnett, H. Wang, Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete, Compos. Part B Eng., 187 (2020) 107815. https://doi.org/10.1016/j.compositesb.2020.107815.
[11] M. T. Tran, X. H. Vu, E. Ferrier, Experimental and analytical analysis of the effect of fibre treatment on the thermomechanical behaviour of continuous carbon textile subjected to simultaneous elevated temperature and uniaxial tensile loadings,” Constr. Build. Mater., 183 (2018) 32-45. https://doi.org/10.1016/j.conbuildmat.2018.06.114
[12] J. Hegger, N. Will, O. Bruckermann, S. Voss, Load–bearing behaviour and simulation of textile reinforced concrete, Mater. Struct., 39 (2006) 765-776. https://doi.org/10.1617/s11527-005-9039-y
[13] M. Raupach et al., Epoxy-impregnated textiles in concrete-load bearing capacity and durability, in ICTRC’2006-1st International RILEM Conference on Textile Reinforced Concrete, 2006, pp. 77–88.
[14] A. Keil, H. Cuypers, M. Raupach, J. Wastiels, Study of the bond in textile reinforced concrete: influence of matrix and interface modification, 2008, Accessed: Jun. 18, 2020. [Online].
[15] C. Scheffler, T. Forster, E. Mader, G. Heinrich, S. Hempel, V. Mechtcherine, Aging of alkali-resistant glass and basalt fibers in alkaline solutions: Evaluation of the failure stress by Weibull distribution function, J. Non-Cryst. Solids, 355 (2009) 2588–2595. https://doi.org/10.1016/j.jnoncrysol.2009.09.018
[16] V. A. Abyzov, Lightweight Refractory Concrete Based on Aluminum-Magnesium-Phosphate Binder, Procedia Eng, 150 (2016) 1440-1445.
[17] V. A. Abyzov, Refractory Cellular Concrete Based on Phosphate Binder from Waste of Production and Recycling of Aluminum, Procedia Eng, 206 (2017) 783-789.
[18] J. Donnini, G. Lancioni, V. Corinaldesi, Failure modes in FRCM systems with dry and pre-impregnated carbon yarns: Experiments and modeling, Compos. Part B Eng., 140 (2018) 57–67. https://doi.org/10.1016/j.compositesb.2017.12.024
[19] S. L. Gao, E. Mader, R. Plonka, Coatings for Fibre and Interphase Modification in a Cementitious Matrix. Accessed: Jun. 18, 2020. [Online].
[20] M. Saidi, A. Gabor, Experimental analysis and analytical modelling of the textile/matrix interface shear stress in textile reinforced cementitious matrix composites, Compos. Part Appl. Sci. Manuf., 135 (2020), 105-961. https://doi.org/10.1016/j.compositesa.2020.105961
[21] M. Saidi, A. Gabor, Adaptation of the strain measurement in textile reinforced cementitious matrix composites by distributed optical fibre and 2D digital image correlation, Strain, 56 (2020) 123-135. https://doi.org/10.1111/str.12335
[22] T. Tlaiji, X. H. Vu, E. Ferrier, A. Si Larbi, Thermomechanical behaviour and residual properties of textile reinforced concrete (TRC) subjected to elevated and high temperature loading: Experimental and comparative study, Compos. Part B Eng., 144 (2018) 99-110. https://doi.org/10.1016/j.compositesb.2018.02.022
[23] M. Saidi, X. H. Vu, E. Ferrier, Experimental and analytical analysis of the effect of water content on the thermomechanical behaviour of glass textile reinforced concrete at elevated temperatures, Cem. Concr. Compos., 112 (2020) 103690. https://doi.org/10.1016/j.cemconcomp.2020.103690
[24] T. Tlaiji, Développement et caractérisation du comportement thermomécanique des matériaux composites TRC, phdthesis, Université de Lyon, 2018.
[25] M. Saidi, A. Gabor, Use of distributed optical fibre as a strain sensor in textile reinforced cementitious matrix composites, Measurement, 140 (2019) 323-333. https://doi.org/10.1016/j.measurement.2019.03.047
[26] M. J. Roth, Flexural and tensile properties of thin, very high-strength, fiber-reinforced concrete panels. Accessed: Jun. 18, 2020. [Online].
[27] R. Contamine, A. S. Larbi, P. Hamelin, Contribution to direct tensile testing of textile reinforced concrete (TRC) composites, Mater. Sci. Eng. A, 528 (2011) 8589-8598. https://doi.org/10.1016/j.msea.2011.08.009
[28] I. G. Colombo, A. Magri, G. Zani, M. Colombo, M. di Prisco, Erratum to: Textile Reinforced Concrete: experimental investigation on design parameters, Mater. Struct., 46 (2013) 1953-1971. https://doi.org/10.1617/s11527-013-0023-7
[29] T. H. Nguyen, X. H. Vu, E. Ferrier, Experimental study of the effect of simultaneous mechanical and high-temperature loadings on the behaviour of textile-reinforced concrete (TRC), Constr. Build. Mater., 125 (2016) 253-270. https://doi.org/10.1016/j.conbuildmat.2016.08.026
[30] M. T. Tran, X. H. Vu, E. Ferrier, Mesoscale experimental investigation of thermomechanical behaviour of the carbon textile reinforced refractory concrete under simultaneous mechanical loading and elevated temperature, Constr. Build. Mater., 217 (2019) 156-171. https://doi.org/10.1016/j.conbuildmat.2019.05.067
[31] M. T. Tran, X. H. Vu, E. Ferrier, Mesoscale numerical modeling and characterisation of effect of reinforcement textile on elevated temperature and tensile behaviour of carbon textile-reinforced concrete composite, Fire Saf. J., 116 (2020) 103186. https://doi.org/10.1016/j.firesaf.2020.103186
[32] C. Caggegi, D. Sciuto, M. Cuomo, Experimental study on effective bond length of basalt textile reinforced mortar strengthening system: Contributions of digital image correlation, Measurement, 129 (2018) 119-127. https://doi.org/10.1016/j.measurement.2018.07.003
[33] E. Tsangouri, D. G. Aggelis, A review of acoustic emission as indicator of reinforcement effectiveness in concrete and cementitious composites, Constr. Build. Mater., 224 (2019) 198-205. https://doi.org/10.1016/j.conbuildmat.2019.07.042
[34] T. H. Nguyen, Contribution à l’étude du comportement thermomécanique à très haute température des matériaux composites pour la réparation et/ou le renforcement des structures de Génie Civil, phdthesis, Université Claude Bernard - Lyon I, 2015.
[35] M. Saidi, A. Gabor, Experimental analysis of the tensile behaviour of textile reinforced cementitious matrix composites using distributed fibre optic sensing (DFOS) technology, Constr. Build. Mater., 230 (2020) 117027. https://doi.org/10.1016/j.conbuildmat.2019.117027
[36] S. D. Santis, F. G. Carozzi, G. D. Felice, C. Poggi, Test methods for Textile Reinforced Mortar systems, Compos. Part B Eng., 127 (2017) 121-132. https://doi.org/10.1016/j.compositesb.2017.03.016
[37] M. a. D. Kok, Textile reinforced double curved concrete elements, 2013, Accessed: Jun. 18, 2020. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A73db7596-a1f5-45a7-a1e4-e51532924773
[38] A. Peled, Z. Cohen, Y. Pasder, A. Roye, and T. Gries, Influences of textile characteristics on the tensile properties of warp knitted cement based composites, Cem. Concr. Compos., 30 (2008) 174-183. https://doi.org/10.1016/j.cemconcomp.2007.09.001
[39] A. Azzam, M. Richter, Investigation of Stress Transfer Behavior in Textile Reinforced Concrete with Application to Reinforcement Overlapping and Development Lengths, in ORTLEPP RHrsg Textilbeton Theor. Prax. Tagungsband Zum, 6 (2011) 103-116.
[40] G. Promis, Composites fibres / matrice minérale : du matériau a la structure, phdthesis, Université Claude Bernard - Lyon I, 2010.
[41] D. A. S. Rambo, F. de A. Silva, R. D. T. Filho, O. da F. M. Gomes, Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete, Cem. Concr. Compos., 48 (2014) 26-34. https://doi.org/10.1016/j.cemconcomp.2014.01.007
[42] W. Brameshuber, Report 36: Textile Reinforced Concrete-State-of-the-Art Report of RILEM TC 201-TRC, presented at the RILEM publications, 2006.
[43] C. Caggegi, E. Lanoye, K. Djama, A. Bassil, A. Gabor, Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios, Compos. Part B Eng., 130 (2017) 90-102. https://doi.org/10.1016/j.compositesb.2017.07.027
[44] G. Ferrara, C. Caggegi, A. Gabor, E. Martinelli, Experimental Study on the Adhesion of Basalt Textile Reinforced Mortars (TRM) to Clay Brick Masonry: The Influence of Textile Density, Fibers, 7 (2019) 103. https://doi.org/10.3390/fib7120103
[45] B. Mobasher, A. Peled, J. Pahilajani, Distributed cracking and stiffness degradation in fabric-cement composites, Mater. Struct., 39 (2006) 317-331. https://doi.org/10.1007/s11527-005-9005-8
[46] A. S. Larbi, A. Agbossou, P. Hamelin, Experimental and numerical investigations about textile-reinforced concrete and hybrid solutions for repairing and/or strengthening reinforced concrete beams, Compos. Struct., 99 (2013) 152-162. https://doi.org/10.1016/j.compstruct.2012.12.005
[47] A. Scholzen, R. Chudoba, J. Hegger, Thin‐walled shell structures made of textile‐reinforced concrete, Struct. Concr., 16 (2015) 106-114. https://doi.org/10.1002/suco.201300071
[2] M. Butler, V. Mechtcherine, M. Lieboldt, Application of Textile-Reinforced Concrete (TRC) for structural strengthening and in prefabrication, Advances in Cement-Based Materials, (2009). https://www.taylorfrancis.com/ (accessed Apr. 01, 2020).
[3] M. Mobasher, V. Dey, Z. Cohen, A. Peled, Correlation of constitutive response of hybrid textile reinforced concrete from tensile and flexural tests, Cem. Concr. Compos., 53 (2014) 148-161. https://doi.org/10.1016/j.cemconcomp.2014.06.004
[4] M. T. Tran, Caractérisation expérimentale et modélisation numérique du comportement thermomécanique à haute température des matériaux composites renforcés par des fibres, phdthesis, Université de Lyon, 2019.
[5] R. Mansur de Castro Silva, F. de Andrade Silva, Carbon textile reinforced concrete: materials and structural analysis, Mater. Struct., 53 (2020) 17. https://doi.org/10.1617/s11527-020-1448-4.
[6] R. Contamine, Contribution à l’étude du comportement mécanique de composites textile-mortier : application à la réparation et/ou renforcement de poutres en béton armé vis-à-vis de l’effort tranchant, phdthesis, Université Claude Bernard - Lyon I, 2011.
[7] B. T. Truong, Formulation, performances mécaniques, et applications, d’un matériau TRC pour le renforcement et la réparation de structures en béton/et béton armé: Approches expérimentale et numérique, phdthesis, Université de Lyon, 2016.
[8] L. N. Koutas, Z. Tetta, D. A. Bournas, T. C. Triantafillou, Strengthening of Concrete Structures with Textile Reinforced Mortars: State-of-the-Art Review, J. Compos. Constr., 23 (2019) 03118001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000882
[9] D. A. Pohoryles, D. A. Bournas, Seismic retrofit of infilled RC frames with textile reinforced mortars: State-of-the-art review and analytical modelling, Compos. Part B Eng., 183 (2020) 107702. https://doi.org/10.1016/j.compositesb.2019.107702
[10] K. T. Q. Nguyen, S. Navaratnam, P. Mendis, K. Zhang, J. Barnett, H. Wang, Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete, Compos. Part B Eng., 187 (2020) 107815. https://doi.org/10.1016/j.compositesb.2020.107815.
[11] M. T. Tran, X. H. Vu, E. Ferrier, Experimental and analytical analysis of the effect of fibre treatment on the thermomechanical behaviour of continuous carbon textile subjected to simultaneous elevated temperature and uniaxial tensile loadings,” Constr. Build. Mater., 183 (2018) 32-45. https://doi.org/10.1016/j.conbuildmat.2018.06.114
[12] J. Hegger, N. Will, O. Bruckermann, S. Voss, Load–bearing behaviour and simulation of textile reinforced concrete, Mater. Struct., 39 (2006) 765-776. https://doi.org/10.1617/s11527-005-9039-y
[13] M. Raupach et al., Epoxy-impregnated textiles in concrete-load bearing capacity and durability, in ICTRC’2006-1st International RILEM Conference on Textile Reinforced Concrete, 2006, pp. 77–88.
[14] A. Keil, H. Cuypers, M. Raupach, J. Wastiels, Study of the bond in textile reinforced concrete: influence of matrix and interface modification, 2008, Accessed: Jun. 18, 2020. [Online].
[15] C. Scheffler, T. Forster, E. Mader, G. Heinrich, S. Hempel, V. Mechtcherine, Aging of alkali-resistant glass and basalt fibers in alkaline solutions: Evaluation of the failure stress by Weibull distribution function, J. Non-Cryst. Solids, 355 (2009) 2588–2595. https://doi.org/10.1016/j.jnoncrysol.2009.09.018
[16] V. A. Abyzov, Lightweight Refractory Concrete Based on Aluminum-Magnesium-Phosphate Binder, Procedia Eng, 150 (2016) 1440-1445.
[17] V. A. Abyzov, Refractory Cellular Concrete Based on Phosphate Binder from Waste of Production and Recycling of Aluminum, Procedia Eng, 206 (2017) 783-789.
[18] J. Donnini, G. Lancioni, V. Corinaldesi, Failure modes in FRCM systems with dry and pre-impregnated carbon yarns: Experiments and modeling, Compos. Part B Eng., 140 (2018) 57–67. https://doi.org/10.1016/j.compositesb.2017.12.024
[19] S. L. Gao, E. Mader, R. Plonka, Coatings for Fibre and Interphase Modification in a Cementitious Matrix. Accessed: Jun. 18, 2020. [Online].
[20] M. Saidi, A. Gabor, Experimental analysis and analytical modelling of the textile/matrix interface shear stress in textile reinforced cementitious matrix composites, Compos. Part Appl. Sci. Manuf., 135 (2020), 105-961. https://doi.org/10.1016/j.compositesa.2020.105961
[21] M. Saidi, A. Gabor, Adaptation of the strain measurement in textile reinforced cementitious matrix composites by distributed optical fibre and 2D digital image correlation, Strain, 56 (2020) 123-135. https://doi.org/10.1111/str.12335
[22] T. Tlaiji, X. H. Vu, E. Ferrier, A. Si Larbi, Thermomechanical behaviour and residual properties of textile reinforced concrete (TRC) subjected to elevated and high temperature loading: Experimental and comparative study, Compos. Part B Eng., 144 (2018) 99-110. https://doi.org/10.1016/j.compositesb.2018.02.022
[23] M. Saidi, X. H. Vu, E. Ferrier, Experimental and analytical analysis of the effect of water content on the thermomechanical behaviour of glass textile reinforced concrete at elevated temperatures, Cem. Concr. Compos., 112 (2020) 103690. https://doi.org/10.1016/j.cemconcomp.2020.103690
[24] T. Tlaiji, Développement et caractérisation du comportement thermomécanique des matériaux composites TRC, phdthesis, Université de Lyon, 2018.
[25] M. Saidi, A. Gabor, Use of distributed optical fibre as a strain sensor in textile reinforced cementitious matrix composites, Measurement, 140 (2019) 323-333. https://doi.org/10.1016/j.measurement.2019.03.047
[26] M. J. Roth, Flexural and tensile properties of thin, very high-strength, fiber-reinforced concrete panels. Accessed: Jun. 18, 2020. [Online].
[27] R. Contamine, A. S. Larbi, P. Hamelin, Contribution to direct tensile testing of textile reinforced concrete (TRC) composites, Mater. Sci. Eng. A, 528 (2011) 8589-8598. https://doi.org/10.1016/j.msea.2011.08.009
[28] I. G. Colombo, A. Magri, G. Zani, M. Colombo, M. di Prisco, Erratum to: Textile Reinforced Concrete: experimental investigation on design parameters, Mater. Struct., 46 (2013) 1953-1971. https://doi.org/10.1617/s11527-013-0023-7
[29] T. H. Nguyen, X. H. Vu, E. Ferrier, Experimental study of the effect of simultaneous mechanical and high-temperature loadings on the behaviour of textile-reinforced concrete (TRC), Constr. Build. Mater., 125 (2016) 253-270. https://doi.org/10.1016/j.conbuildmat.2016.08.026
[30] M. T. Tran, X. H. Vu, E. Ferrier, Mesoscale experimental investigation of thermomechanical behaviour of the carbon textile reinforced refractory concrete under simultaneous mechanical loading and elevated temperature, Constr. Build. Mater., 217 (2019) 156-171. https://doi.org/10.1016/j.conbuildmat.2019.05.067
[31] M. T. Tran, X. H. Vu, E. Ferrier, Mesoscale numerical modeling and characterisation of effect of reinforcement textile on elevated temperature and tensile behaviour of carbon textile-reinforced concrete composite, Fire Saf. J., 116 (2020) 103186. https://doi.org/10.1016/j.firesaf.2020.103186
[32] C. Caggegi, D. Sciuto, M. Cuomo, Experimental study on effective bond length of basalt textile reinforced mortar strengthening system: Contributions of digital image correlation, Measurement, 129 (2018) 119-127. https://doi.org/10.1016/j.measurement.2018.07.003
[33] E. Tsangouri, D. G. Aggelis, A review of acoustic emission as indicator of reinforcement effectiveness in concrete and cementitious composites, Constr. Build. Mater., 224 (2019) 198-205. https://doi.org/10.1016/j.conbuildmat.2019.07.042
[34] T. H. Nguyen, Contribution à l’étude du comportement thermomécanique à très haute température des matériaux composites pour la réparation et/ou le renforcement des structures de Génie Civil, phdthesis, Université Claude Bernard - Lyon I, 2015.
[35] M. Saidi, A. Gabor, Experimental analysis of the tensile behaviour of textile reinforced cementitious matrix composites using distributed fibre optic sensing (DFOS) technology, Constr. Build. Mater., 230 (2020) 117027. https://doi.org/10.1016/j.conbuildmat.2019.117027
[36] S. D. Santis, F. G. Carozzi, G. D. Felice, C. Poggi, Test methods for Textile Reinforced Mortar systems, Compos. Part B Eng., 127 (2017) 121-132. https://doi.org/10.1016/j.compositesb.2017.03.016
[37] M. a. D. Kok, Textile reinforced double curved concrete elements, 2013, Accessed: Jun. 18, 2020. [Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A73db7596-a1f5-45a7-a1e4-e51532924773
[38] A. Peled, Z. Cohen, Y. Pasder, A. Roye, and T. Gries, Influences of textile characteristics on the tensile properties of warp knitted cement based composites, Cem. Concr. Compos., 30 (2008) 174-183. https://doi.org/10.1016/j.cemconcomp.2007.09.001
[39] A. Azzam, M. Richter, Investigation of Stress Transfer Behavior in Textile Reinforced Concrete with Application to Reinforcement Overlapping and Development Lengths, in ORTLEPP RHrsg Textilbeton Theor. Prax. Tagungsband Zum, 6 (2011) 103-116.
[40] G. Promis, Composites fibres / matrice minérale : du matériau a la structure, phdthesis, Université Claude Bernard - Lyon I, 2010.
[41] D. A. S. Rambo, F. de A. Silva, R. D. T. Filho, O. da F. M. Gomes, Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete, Cem. Concr. Compos., 48 (2014) 26-34. https://doi.org/10.1016/j.cemconcomp.2014.01.007
[42] W. Brameshuber, Report 36: Textile Reinforced Concrete-State-of-the-Art Report of RILEM TC 201-TRC, presented at the RILEM publications, 2006.
[43] C. Caggegi, E. Lanoye, K. Djama, A. Bassil, A. Gabor, Tensile behaviour of a basalt TRM strengthening system: Influence of mortar and reinforcing textile ratios, Compos. Part B Eng., 130 (2017) 90-102. https://doi.org/10.1016/j.compositesb.2017.07.027
[44] G. Ferrara, C. Caggegi, A. Gabor, E. Martinelli, Experimental Study on the Adhesion of Basalt Textile Reinforced Mortars (TRM) to Clay Brick Masonry: The Influence of Textile Density, Fibers, 7 (2019) 103. https://doi.org/10.3390/fib7120103
[45] B. Mobasher, A. Peled, J. Pahilajani, Distributed cracking and stiffness degradation in fabric-cement composites, Mater. Struct., 39 (2006) 317-331. https://doi.org/10.1007/s11527-005-9005-8
[46] A. S. Larbi, A. Agbossou, P. Hamelin, Experimental and numerical investigations about textile-reinforced concrete and hybrid solutions for repairing and/or strengthening reinforced concrete beams, Compos. Struct., 99 (2013) 152-162. https://doi.org/10.1016/j.compstruct.2012.12.005
[47] A. Scholzen, R. Chudoba, J. Hegger, Thin‐walled shell structures made of textile‐reinforced concrete, Struct. Concr., 16 (2015) 106-114. https://doi.org/10.1002/suco.201300071
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
21/10/2020
Nhận bài sửa
16/11/2020
Chấp nhận đăng
18/11/2020
Xuất bản
25/01/2021
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Tran Manh, T., Do Ngoc, T., & Vu Xuan, H. (7600). A state-of-the art review of tensile behavior of the textile-reinforced concrete composite. Tạp Chí Khoa Học Giao Thông Vận Tải, 72(1), 127-142. https://doi.org/10.47869/tcsj.72.1.14
Số lần xem tóm tắt
198
Số lần xem bài báo
353