Dye sensitized solar cell (DSC) based on reduced graphene oxide (rGO)-TiO2 nanocomposite photoelectrode and polyaniline (PANI) counter electrode

  • Ahmed T.O.

    Department of Physics, Federal University Lokoja, P.M.B. 1154, Nigeria
  • Ogunleye O.O.

    Department of Physics, Federal University Lokoja, P.M.B. 1154, Nigeria
  • Abdulrahaman A.Y.

    Department of Physics, Federal University Lokoja, P.M.B. 1154, Nigeria
  • Alu N.

    Physics Advanced Research Centre, Sheda Science and Technology Complex, Abuja, Nigeria
Email: tajahmol@yahoo.co.uk
Từ khóa: Dye sensitized solar cells, rGO-TiO2 nanocomposite, PANI counter electrode, Energy conversion efficiency, Short circuit current density

Tóm tắt

We report the successful application of reduced graphene oxide–titania (rGO–TiO2) nanocomposite as an efficient photoelectrode and an inexpensive polyaniline (PANI) synthesized by in-situ polymerization on graphite foam as a platinum substitute for tri-iodide reduction for dye‐sensitized solar cell (DSC). The bulk carrier concentration and conductivity of the PANI was measured to be 3.02x1017cm-3 and 4.89x10-1 W-1cm-1 respectively. Subsequently, three DSCs were assembled with rGO–TiO2 nanocomposite photoelectrode and PANI as counter electrode for one and the other two assembled using unmodified TiO2 photoelectrode with PANI and platinum as counter electrodes, respectively. The rGO loading allows more dye to be adsorbed due its large surface area thus improving the light harvesting efficiency (LHE). This improvement in LHE increases the short circuit current density (JSC). The JSC increase is more substantial compared to the reduction in VOC; thus, the increase in the efficiency of the cell with rGO-TiO2 nanocomposite electrode. The short circuit current density for the rGO-TiO2 DSC with PANI counter electrode is 0.45mAcm-2 while that for the unmodified TiO2 DSCs with PANI counter electrode and platinum counter electrode are 0.11mAcm-2 and 0.10 mAcm-2 respectively. This corresponds to 76% increase in the current density and it increases collection rate at the photoelectrode leading to enhanced power conversion efficiency of 0.13% compared with 0.04% and 0.02% for the DSCs assembled with unmodified TiO2 under full sunlight illumination (100 mW/cm2, AM 1.5G) as a result of the better charge collection efficiency of rGO, which reduces the back electron transfer process. This represent 69% enhancement of energy conversion efficiency in the DSC consisting of rGO modified TiO2

Tài liệu tham khảo

[1] J. Li, A. C. Grimsdale, Carbazole-based Polymer for Organic photovoltaic devices, Chemical Society Reviews, 39 (2010) 2399-2410. https://doi.org/10.1039/B915995A
[2] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Wiessortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-State Dye-Sensitized Mesoporous TiO2 Solar Cells with High Photon-to-Electron Conversion Efficiencies, Nature, 395 (1998) 583-585. https://doi.org/10.1038/26936
[3] A. Yella, H. Lee, H.N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeerudin, E. W. Diau, C. Yeh, S. M. Zakeeruddin, M. Gratzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12% Efficiency, Science, 334 (2011) 629-634. https://doi.org/10.1126/science.1209688
[4] A. Hagfeldt, S.E. Lindquist, M. Gratzel., Charge carrier separation and charge transport in nanocrystalline junctions, Sol. Energy Mater. Sol. Cells, 32 (1996) 245-257. https://doi.org/10.1016/0927-0248(94)90262-3
[5] L. Kavan, M. Gratzel, S. E. Gilbert, C. Klemenz, H. J. Scheel, Electrochemical and photoelectrochemical investigation of single crystal anatase, J. Am. Chem. Soc., 118 (1996) 6716-6723. https://doi.org/10.1021/ja954172l
[6] J. Bisquert, G. Garcia-Belmonte, F.J. Fabregat-Santiago, Modeling the electric potential distribution in the dark in nanoporous semiconductor electrodes, Solid State Electrochem., 3 (1999) 337-347. https://doi.org/10.1007/s100080050164
[7] Y. Tachibana, J. E. Moser, M. Gratzel, D. Klug, J.R. Durrant, Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films, J. Phys. Chem., 100 (1996), 20056-20062. https://doi.org/10.1021/jp962227f
[8] A. Kay, M. Gratzel, Dye-sensitized core shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide, Chem. Mater., 14 (2002) 2930-2935. https://doi.org/10.1021/cm0115968
[9] G.G.A. Kumara, K. Tennakone, V.P.S. Perera, A. Konno, S. Kaneko, M. Okuya, Suppression of recombination in a dye-sensitized photoelectrochemical cell made from a film of tin IV oxide crystallites coated with a thin layer of aluminium oxide, J. Phys. D Appl. Phys., 34 (2001) 868-873. https://doi.org/10.1088/0022-3727/34/6/306
[10] K. Tennakone, J. Bandara, P.K.M. Bandaranayake, G.G.A. Kumara, A. Konno, Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2, Jpn. J. Appl. Phys, 40 (2001) L732. https://doi.org/10.1143/jjap.40.l732
[11] K. Tennakone, V.P.S. Perera, I.R.M. Kottegoda, L.A.A. De Silva, G.G.A. Kumara, A. Konno, Dye-sensitized photovoltaic cells: Suppression of electron-hole recombination by deposition of the dye on a thin insulating film in contact with a semiconductor, J. Electron. Mater., 30 (2001) 992-996. https://doi.org/10.1007/bf02657723
[12] B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields., Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces, J. Phys. Chem. B, 105 (2001) 1422-1429. https://doi.org/10.1021/jp003000u
[13] R. Kennedy, I. Martini, G. Hartland, P.V Kamat., Capped semiconductor colloids: Synthesis and photochemistry of CdS capped SnO2 nanocrtstallites, Proc. Indian Acad. Sci. Chem. Sci., 109 (1997) 497-507. https://doi.org/10.1007/bf02869209
[14] C. Nasr, P.V. Kamat, S. Hotchandani., Photoelectrochemistry of composite semiconductor thin films: Photosensitization of SnO2/CdS coupled nanocrystallites with a ruthenium polypyridyl complex, J. Phys. Chem. B, 102 (1998) 10047-10056. https://doi.org/10.1021/jp970833k
[15] P.A. Sant, P. V. Kamat., Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters., Phys. Chem. Chem. Phys., 4 (2002) 198-203. https://doi.org/10.1039/b107544f
[16] I. Bedja, P.V. Kamat., Capped semiconductor colloids: Synthesis and photoelectrochemical behaviour of TiO2 capped SnO2 nanocrystallites., J. Phys. Chem., 99 (1995) 9182-9188. https://doi.org/10.1021/j100022a035
[17] S. Chappel, S.G. Chen, A. Zaban., TiO2 coated nanoporous SnO2 electrodes for dye-sensitized solar cells, Langmuir, 18 (2002) 3336-3342. https://doi.org/10.1021/la015536s
[18] S.G. Chen, S. Chappel, Y. Diamant, A. Zaban., Preparation of Nb2O5 coated TiO2 nanoprous electrode and their application in dye-sensitized solar cells, Chem. Mater., 13 (2001) 4629-4634. https://doi.org/10.1021/la051807d.s001
[19] G.G.A. Kumara, A. Konno, K. Tennakone., Photoelectrochemical cells made from SnO2/ZnO films sensitized with Eosin dyes, Chem. Lett., 12 (2001) 180-181. https://doi.org/10.1246/cl.2001.180
[20] H. Tada, A. Hattori., A patterned TiO2/SnO2 bilayer type photocatalyst, J. Phys. Chem. B, 104 (2000) 4585-4604. https://doi.org/10.1021/jp000049r
[21] K. Tennakone, G.K.R. Senadeera, V.P.S. Perera, I.R.M. Kottegoda, L.A.A. De Silva, Dye-sensitized photoelectrochemical cells based on porous SnO2/ZnO composite TiO2 films with a polymer electrolyte, Chem. Mater., 11 (199) 2474-2477. https://doi.org/10.1021/cm990165a
[22] A. Zaban, S.G. Chen, S. Chappel, B.A.Gregg, Bilayer nanoporous electrodes for dye-sensitized solar cells, Chem. Commun, 22 (2000) 2231-2232. https://doi.org/10.1039/B005921H
[23] S. Burnside, J.E. Moser, K. Brooks, M. Gratzel, D. Cahen., Nanocrystalline mesoporous strontium titanate as photoelectrode materials for photosensitized solar devices: increasing photovoltage through flat band potential engineering, J. Phys. Chem. B, 103 (1999) 9328-9332. https://doi.org/10.1021/jp9913867
[24] F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gratzel, D. Gal, S. Ruhle, D. Cahen, Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5 and SrTiO3 nanocrystalline photoanode: an indication for electron injection from higher excited dye states, J. Phys. Chem. B, 105 (2001) 6347-6352. https://doi.org/10.1021/jp010380q
[25] Y. Diamant, S. G. Chen, O. Melamed, A. Zaban., Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: The Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core, J. Phys. Chem. B, 107 (2003) 1977-1981. https://doi.org/10.1021/jp027827v
[26] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater, 6 (2007) 183–191. https://doi.org/10.1038/nnano.2010.224
[27] Q.J. Xiang, J.G. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts, Chem. Soc. Rev, 41 (2012) 782–796. https://doi.org/10.1039/C1CS15172J
[28] R.K.Yadav, J.O. Baeg, G.H. Oh, N.J. Park, K.J. Kong, J. Kim, D.W. Hwang, S.K. Biswas., A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2, J. Am. Chem. Soc, 134 (2012) 11455–11461. https://doi.org/10.1021/ja3009902
[29] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339. https://doi.org/10.1021/ja01539a017
[30] X.F. Gao, J. Jang, S. Nagase., Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design, J. Phys. Chem. C., 14 (2010) 832–842. https://doi.org/10.1021/jp909284g
[31] S.D. Perera, R.G. Mariano, N. Nijem, Y. Chabal, J.P. Ferraris, K.J. Balkus., Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene, J. Power Sources., 215 (2012) 1–10. https://doi.org/10.1016/j.jpowsour.2012.04.059
[32] T. Soltani, B.K. Lee., Sono-synthesis of nanocrystallized BiFeO3/reduced graphene oxide composites for visible photocatalytic degradation improvement of bisphenol., A. Chem. Eng. J., 306 (2016) 204–213. https://doi.org/10.1016/j.cej.2016.07.051
[33] M. Debabrata, A. Chayan, K.G. Barun, C. Madhurya, N.G. Narendra., One-Dimensional BiFeO3 nanowire-reduced graphene oxide nanocomposite as excellent supercapacitor electrode material, ACS Appl, Energy Mater., 1 (2018) 464–474. https://doi.org/10.1021/acsaem.7b00097.s001
[34] Q. Zhao, R.F. Liu, Y.L. Shen, M.L. Fang, M.F. Dong., Highly efficient visible-light-driven graphene-CdS nanocomposite photocatalysts, J. Nanosci. Nanotechnol, 18 (2018) 4755–4763. https://doi.org/10.1166/jnn.2018.15344
[35] D.F. Xu, L.L. Li, R.A. He, L.F. Qi, L.Y. Zhang, B. Cheng., Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance, Appl. Surf. Sci., 434 (2018) 620–625. https://doi.org/10.1016/j.apsusc.2017.10.192
[36] F. Hosseini, S. Mohebbi, Photocatalytic oxidation based on modified titanium dioxide with reduced graphene oxide and CdSe/CdS as nanohybrid materials, J. Clust. Sci., 29 (2018) 289–300. https://doi.org/10.1007/s10876-017-1326-6
[37] B. J. Liu, L. Lin, D. Yu, J. Sun, Z.J. Zhu, P. Gao, W. Wang, Construction of fiber-based BiVO4/SiO2/reduced graphene oxide (RGO) with efficient visible light photocatalytic activity, Cellulose, 25 (2018) 1089–1101. https://doi.org/10.1007/s10570-017-1628-8
[38] S. P. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, Reduced graphene oxide–titania nanocomposite‐modified photoanode for efficient dye‐sensitized solar cells., Int. J. Energy Res., 39 (2015) 812-824. https://doi.org/10.1002/er.3307
[39] L. Wei, S. Chen, Y.Yang, Y. Dong, W. Song, R. Fan, Reduced graphene oxide modified TiO2 semiconductor materials for dye-sensitized solar cells, RSC Advances, 6 (2016) 100866-100875. https://doi.org/10.1039/C6RA22112B
[40] T. O. Ahmed, N. Alu, A. Y. AbdulRahman., Comparative Study on the Photovoltaic Properties of Dye-Sensitized Solar Cells (DSCs) Based on Different Counter Electrode Configurations, Journal of Materials Science Research and Reviews, 3 (2019) 1-9. https://journaljmsrr.com/index.php/JMSRR/article/view/30088

Tải xuống

Chưa có dữ liệu thống kê
Nhận bài
31/08/2020
Nhận bài sửa
22/09/2020
Chấp nhận đăng
23/09/2020
Xuất bản
30/09/2020
Chuyên mục
Công trình khoa học