A methodology of re-generating a representative element volume of fractured rock mass
Email:
dang.hong.lam@utc.edu.vn
Từ khóa:
Fractured rock mass, fracture network, representative element volume, REV, DEAL.II.
Tóm tắt
In simulation of fractured rock mass such as mechanical calculation, hydraulic calculation or coupled hydro-mechanical calculation, the representative element volume of fractured rock mass in the simulating code is very important and give the success of simulation works. The difficulties of how to make a representative element volume are come from the numerous fractures distributed in different orientation, length, location of the actual fracture network. Based on study of fracture characteristics of some fractured sites in the world, the paper presented some main items concerning to the fracture properties. A methodology of re-generating a representative element volume of fractured rock mass by DEAL.II code was presented in this paper. Finally, some applications were introduced to highlight the performance as well as efficiency of this methodology.Tài liệu tham khảo
[1]. Silberhorn-Hemminger, Modeling of fracture aquifer systems: geostatistical analysis and deterministic-stochastic, fracture generation, PhD thesis, Institute for Water and Environmental Systems Modeling, University of Stuttgart, 2002.
[2]. A.-B. Tatomir, Numerical Investigations of Flow through Fractured Porous Media, Master's Thesis, Universität Stuttgart, 2007.
[3]. H.A Nguyen, H.D Nguyen, T.V. Nguyen, X.L Le. Hydraulic Characterization of Fractured Reservoirs: Application on Discrete Fracture Models-Đặc tích hóa thủy động lực của các vỉa chứa nứt nẻ: Ứng dụng mô hình các hệ thống nứt nẻ rời rạc, Journal of Mining and Earth Sciences-Tạp chí KHKT Mỏ - Địa chất), 54, 4/2016, (Chuyên đề Khoan – Khai thác), tr.3-10 (In Vietnamese)
[4]. R. W. Zimmerman, I. Main, Hydromechanical behavior of fractured rocks, in Y. Gueguen, and M. Bouteca (Eds.), Mechanics of Fluid-Saturated Rocks, Elsevier, London, 2004, pp. 363-421.
[5]. J. Rutqvist, O. Stephansson, The role of hydromechanical coupling in fractured rock engineering, Hydrogeol J, 11 (2003) 7–40. https://doi.org/10.1007/s10040-002-0241-5
[6]. Q. Lei, Characterisation and modelling of natural fracture networks: geometry, geomechanics and fluid flow, PhD thesis, Imperial College London, 2016. https://spiral.imperial.ac.uk/handle/10044/1/42358
[7]. W. S Dershowitz, H. H. Einstein, Characterizing rock joint geometry with joint system models, Rock Mech. Rock Eng., 21 (1988) 21–51. https://doi.org/10.1007/BF01019674
[8]. J. C. S. Long, D. M. Billaux, From field data to fracture network modeling: An example incorporating spatial structure. Water Resour. Res., 23 (1987) 1201-1216. https://doi.org/10.1029/WR023i007p01201
[9]. J. Birkholzer, K. Karasaki, FMGN, RENUMN, POLY, TRIPOLY: Suite of Programs for Calculating and Analyzing Flow and Transport in Fracture Networks Embedded in Porous Matrix Blocks, LBNL-39387, 1996. https://digital.library.unt.edu/ark:/67531/metadc685360/
[10]. K. B. Min, L. Jing, Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method, Int. J. Rock Mech. Min. Sci., 40 (2003) 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
[11]. K. B. Min, L. Jing, O. Stephansson, Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK, Hydrogeo. Jour., 12 (2004) 497–510. https://doi.org/10.1007/s10040-004-0331-7
[12]. J. Anderson, I. Staub, L. Knight, Decovalex III/ Benchpar projects, Approaches to Upscaling Thermal-Hydro- Mechanical Processes in a Fractured Rock Mass and its Significance for Large-Scale Repository Performance Assessment, Summary of Findings, Report of BMT2/WP3, 2005. https://inis.iaea.org/search/search.aspx?orig_q=RN:37022239
[13]. A. Baghbanan, Scale and Stress Effects on Hydro-Mechanical Properties of Fractured Rock Mass, ISSN 1650-8602, PhD thesis, Royal Institute of Technology, 2008.
[14]. Bangerth, G. Kanschat, Concepts for Object-Oriented Finite Element Software— The deal.II Library, Report 99-43, Sonderforschungsbereich 3-59, IWR, Universitat Heidelberg, Heidelberg, Germany, 1999.
[15]. W. Bangerth, R. Hartmann and G. Kanschat, Deal.II — a general purpose object oriented finite element library, ACM Trans. Math. Software, 33 (2007). https://doi.org/10.1145/1268776.1268779
[16]. S. Ge, A governing equation for fluid flow in rough fractures, Water Resour Res; 33 (1997) 53-61. https://doi.org/10.1029/96WR02588
[17]. C.E. Renshaw, J.C. Park, Effect of mechanical interactions on the scaling of fracture length and aperture, Nature 386 (1997) 482–484. https://doi.org/10.1038/386482a0
[18]. H.L. Dang. A hydro-mechanical modeling of double porosity and double permeability fractured reservoirs, PhD thesis, University of Orleans, France, 2018.
[2]. A.-B. Tatomir, Numerical Investigations of Flow through Fractured Porous Media, Master's Thesis, Universität Stuttgart, 2007.
[3]. H.A Nguyen, H.D Nguyen, T.V. Nguyen, X.L Le. Hydraulic Characterization of Fractured Reservoirs: Application on Discrete Fracture Models-Đặc tích hóa thủy động lực của các vỉa chứa nứt nẻ: Ứng dụng mô hình các hệ thống nứt nẻ rời rạc, Journal of Mining and Earth Sciences-Tạp chí KHKT Mỏ - Địa chất), 54, 4/2016, (Chuyên đề Khoan – Khai thác), tr.3-10 (In Vietnamese)
[4]. R. W. Zimmerman, I. Main, Hydromechanical behavior of fractured rocks, in Y. Gueguen, and M. Bouteca (Eds.), Mechanics of Fluid-Saturated Rocks, Elsevier, London, 2004, pp. 363-421.
[5]. J. Rutqvist, O. Stephansson, The role of hydromechanical coupling in fractured rock engineering, Hydrogeol J, 11 (2003) 7–40. https://doi.org/10.1007/s10040-002-0241-5
[6]. Q. Lei, Characterisation and modelling of natural fracture networks: geometry, geomechanics and fluid flow, PhD thesis, Imperial College London, 2016. https://spiral.imperial.ac.uk/handle/10044/1/42358
[7]. W. S Dershowitz, H. H. Einstein, Characterizing rock joint geometry with joint system models, Rock Mech. Rock Eng., 21 (1988) 21–51. https://doi.org/10.1007/BF01019674
[8]. J. C. S. Long, D. M. Billaux, From field data to fracture network modeling: An example incorporating spatial structure. Water Resour. Res., 23 (1987) 1201-1216. https://doi.org/10.1029/WR023i007p01201
[9]. J. Birkholzer, K. Karasaki, FMGN, RENUMN, POLY, TRIPOLY: Suite of Programs for Calculating and Analyzing Flow and Transport in Fracture Networks Embedded in Porous Matrix Blocks, LBNL-39387, 1996. https://digital.library.unt.edu/ark:/67531/metadc685360/
[10]. K. B. Min, L. Jing, Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method, Int. J. Rock Mech. Min. Sci., 40 (2003) 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
[11]. K. B. Min, L. Jing, O. Stephansson, Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK, Hydrogeo. Jour., 12 (2004) 497–510. https://doi.org/10.1007/s10040-004-0331-7
[12]. J. Anderson, I. Staub, L. Knight, Decovalex III/ Benchpar projects, Approaches to Upscaling Thermal-Hydro- Mechanical Processes in a Fractured Rock Mass and its Significance for Large-Scale Repository Performance Assessment, Summary of Findings, Report of BMT2/WP3, 2005. https://inis.iaea.org/search/search.aspx?orig_q=RN:37022239
[13]. A. Baghbanan, Scale and Stress Effects on Hydro-Mechanical Properties of Fractured Rock Mass, ISSN 1650-8602, PhD thesis, Royal Institute of Technology, 2008.
[14]. Bangerth, G. Kanschat, Concepts for Object-Oriented Finite Element Software— The deal.II Library, Report 99-43, Sonderforschungsbereich 3-59, IWR, Universitat Heidelberg, Heidelberg, Germany, 1999.
[15]. W. Bangerth, R. Hartmann and G. Kanschat, Deal.II — a general purpose object oriented finite element library, ACM Trans. Math. Software, 33 (2007). https://doi.org/10.1145/1268776.1268779
[16]. S. Ge, A governing equation for fluid flow in rough fractures, Water Resour Res; 33 (1997) 53-61. https://doi.org/10.1029/96WR02588
[17]. C.E. Renshaw, J.C. Park, Effect of mechanical interactions on the scaling of fracture length and aperture, Nature 386 (1997) 482–484. https://doi.org/10.1038/386482a0
[18]. H.L. Dang. A hydro-mechanical modeling of double porosity and double permeability fractured reservoirs, PhD thesis, University of Orleans, France, 2018.
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
01/02/2020
Nhận bài sửa
19/03/2020
Chấp nhận đăng
19/03/2020
Xuất bản
28/05/2020
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Hong-Lam, D., & Phi Hong, T. (1590598800). A methodology of re-generating a representative element volume of fractured rock mass. Tạp Chí Khoa Học Giao Thông Vận Tải, 71(4), 347-358. https://doi.org/10.25073/tcsj.71.4.4
Số lần xem tóm tắt
185
Số lần xem bài báo
139