Application of IVE software to estimate greenhouse gas emissions from motorcycles in Hanoi
Email:
nylien@utc.edu.vn
Keywords:
emission factors, greenhouse gases, motorcycles, IVE, VSP, Hanoi.
Abstract
The transportation sector is currently one of the major sources of greenhouse gas (GHG) emissions due to its large energy demand, while energy mainly comes from fossil fuels. This study aims to quantify greenhouse gas (GHG) emissions from motorcycles in Hanoi using the IVE simulation software, based on real-world driving data. The driving data were collected using a Garmin 65s device across 40 road routes in Hanoi. A nine-step filtering process was applied to eliminate random errors, with 7.1% of data points detected and corrected. The distribution of vehicle-specific power (VSP) for motorcycles in Hanoi is predominantly concentrated in idle or low-power regions. The results indicate that the GHG emission factors for motorcycles in Hanoi are 46.71 g/km for CO₂ and 0.27 g/km for CH₄. The total GHG emissions from motorcycles in 2020 were estimated at approximately 1.36 million tons of CO₂tđ and are projected to reach 1.78 million tons by 2025. The average annual GHG emissions per motorcycle under real-world driving conditions in Hanoi are estimated at 0.41 tons of CO₂tđ.References
[1]. World Bank, Country Climate and Development (Vietnam), 2022. https://www.worldbank.org/en/publication/country-climate-development-reports.
[2]. J. E. Oh, M. J. Dos Anjos Ribeiro Cordeiro, J. A. Rogers, K. Nguyen, D. Bongardt, L. T. Dang ,V. A. Tuan, Addressing Climate Change in Transport: Volume 1 : Pathway to Low-Carbon Transport The World Bank and Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH, 2019. http://documents.worldbank.org/curated/en/581131568121810607/Volume-1-Pathway-to-Low-Carbon-Transport
[3]. Chương trình Quốc gia về Năng lượng tiết kiệm và hiệu quả (VNEEP), Thống kê năng lượng Việt Nam, 2021.
[4]. Viện chiến lược và phát triển giao thông vận tải (TDSI), Niên giám thống kê vận tải và Logistics, NXB GTVT, 2020.
[5]. Đ.H. Nguyễn, T. Michimasa, H.L. Bùi, T.L.H. Nguyễn, B.N. Nguyễn, T.T. Lưu, T.D. Nguyễn, Báo cáo dự án: Nghiên cứu hiện trạng giao thông xe máy tại VIệt Nam. Mã số: TRN/FAC/12/006/REG, Bộ Giao thông vận tải, 2019.
[6]. Huong Le, F. Posada ,Z. Yang, Electric two-wheeler market growth in Vietnam: An overview, International Council on Clean Transportation, (2022).
[7]. Intergovernmental Panel on Climate Change (IPCC), 2006 IPCC guidelines for national greenhouse gas inventories. Vol 2: Energy, 2006.
[8]. T. T. Nguyen, T. D. Nghiem ,T. T. Tran, Potentiality of Co-benefits of climate and air quality in fuel switching for Hanoi bus system, Journal of Science and Technology, 49 (2011) 117-128. https://doi.org/10.15625/0866-708X
[9]. N. T. Y. Lien ,N. T. Dung, Health co-benefits of climate change mitigation for the bus system of Hanoi, Vietnam Journal of Science and Technology, 56 (2018) 312-323. http://doi.org/10.15625/2525-2518/56/3/9398
[10]. T. D. Nghiem, T. N. Tran ,T. T. Tran, Co-benefits of air quality and climate for taxi system in Hanoi associated with selected control scenarios, Journal of Science and Technology, 51 (2013) 104-111.
[11]. N. T. Kim Oanh, M. T. T. Phuong, D. A. Permadi, Analysis of motorcycle fleet in Hanoi for estimation of air pollution emission and climate mitigation co-benefit of technology implementation, Atmospheric environment, 59 (2012) 438-448. http://doi.org/10.1016/j.atmosenv.2012.04.057
[12]. N. T. Kim Oanh ,H. V. Huynh, Comparative Assessment of Traffic Fleets in Asian Cities for Emission Inventory and Analysis of Co-Benefit from Faster Vehicle Technology Intrusion, (2015) http://doi.org/10.13140/RG.2.1.1545.5764.
[13]. Y. L. T. Nguyen, H. Y. T. Than, Estimating the greenhouse gas emission factor of motorcycles under real-world driving conditions in Hanoi: a case study, Transport and Communications Science Journal, 74 (2023) 764-774. https://doi.org/10.47869/tcsj.74.7.1
[14]. International Sustainable Systems Research Center, International Vehicle Emissions (IVE): Model Overview and Model Users Manual, 2008. http://www.issrc.org/ive/
[15]. D. A. Niemeier, T. Limanond ,E. J. Morey, Data collection for driving cycle development: evaluation of data collection protocols, Institute of Transportation Studies, University of California at Davis, 1999.
[16]. J. Jun, R. Guensler ,J. Ogle, Smoothing Methods Designed to Minimize the Impact of GPS Random Error on Travel Distance, Speed, and Acceleration Profile Estimates Transportation Research Record: Journal of the Transportation Research Board, 1972 (2006) 141-150. https://doi.org/10.1177/0361198106197200117.
[17]. J. Ogle, R. Guensler, W. Bachman, M. Koutsak ,J. Wolf, Accuracy of Global Positioning System for Determining Driver Performance Parameters, Transportation Research Record: Journal of the Transportation Research Board, 1818 (2002) 12-24. https://doi.org/10.3141/1818-03
[18]. H. Y. Tong ,W. T. Hung, A Framework for Developing Driving Cycles with On-Road Driving Data, Transport Reviews: A Transnational Transdisciplinary Journal, 30 (2010) 589-615. http://dx.doi.org/10.1080/01441640903286134.
[19]. N. T. Yen-Lien, K. N. Duc, Q. C. Minh, Y. T. T. Hai ,M. B. Le Hong, A study on the determination of the real-world driving characteristics of motorcycles in Hanoi, Transport and Communications Science Journal, 73 (2022) 412-426. https://doi.org/10.47869/tcsj.73.4.6
[20]. Le Anh-Tuan, P. M. Tuan, N. T. Truc ,N. D. Vinh, Measurements of Emission factors and Fuel Consumption for Motocycles on a Chassis Dynamometer based on a localized driving cycle, ASEAN Engineering Journal Part C, 1 (2012) 73-85.
[21]. S.-H. Ho, Y.-D. Wong ,V. W.-C. Chang, Developing Singapore Driving Cycle for passenger car to estimate fuel consumption and vehicular emissions, Atmospheric Environment, 97 (2014) 335-362.
[22]. A. Duran ,M. Earleywine, GPS Data Filtration Method for Drive Cycle Analysis Applications, SAE 2012 World Congress, 2012.
[23]. C. Lin, X. Zhou, D. Wu ,B. Gong, Estimation of Emissions at Signalized Intersections Using an Improved MOVES Model with GPS Data, International Journal of Environmental Research and Public Health, 16 (2019) 3647. http://doi.org/10.3390/ijerph16193647.
[24]. Nguyễn Thị Yến Liên, Nghiên cứu ảnh hưởng của các phương thức lái đến mức tiêu hao nhiên liệu ngoài thực tế đối với xe máy. Đề tài NCKH cấp Trường trọng điểm, mã số: T2022-MT-013TĐ, Trường Đại học Giao thông vận tải, 2023.
[25]. Viện Khoa học và Công nghệ giao thông vận tải, Nghiên cứu thí điểm kiểm tra khí thải xe mô tô, xe gắn máy và thu hồi xe mô tô, xe gắn máy cũ đang lưu hành trên địa bàn thành phố Hà Nội góp phần bảo vệ môi trường không khí, 2022.
[26]. Viện Khoa học và Công nghệ giao thông vận tải, Nghiên cứu thực trạng phát thải của xe máy đang lưu hành hướng tới kiểm soát khí thải, góp phần cải thiện chất lượng môi trường không khí, 2018..
[27]. Tổng Cục thống kê, Số liệu thống kê về đơn vị hành chính, đất đai và khí hậu, 2024. https://www.gso.gov.vn/so-lieu-thong-ke/.
[28]. J. Jungwook, G. Randall ,O. Jennifer, Smoothing Methods Designed to Minimize the Impact of GPS Random Error on Travel Distance, Speed, and Acceleration Profile Estimates Transportation Research Record: Journal of the Transportation Research Board, 1972 (2006) 141-150. http://dx.doi.org/10.3141/1972-19.
[29]. I. Selesnick, Least Squares with Examples in Signal Processing, 2013. https://eeweb.engineering.nyu.edu/iselesni/lecture_notes/least_squares/least_squares_SP.pdf
[30]. Y.-L. T. Nguyen, N.-D. Bui, T.-D. Nghiem ,A.-T. Le, GPS data processing for driving cycle development in Hanoi, Vietnam, Journal of Engineering Science and Technology (JESTEC), 15 (2020) 1429 - 1440.
[31]. W. F. Faris, H. A. Rakha, R. I. Kafafy, M. Idres ,S. Elmoselhy, Vehicle fuel consumption and emission modelling: an in-depth literature review, International Journal of Vehicle Systems Modelling and Testing, 6 (2011) 318-395. http://doi.org/10.1504/IJVSMT.2011.044232.
[32]. H. Guo, Q.-y. Zhang, Y. Shi ,D.-h. Wang, Evaluation of the International Vehicle Emission (IVE) model with on-road remote sensing measurements, Journal of environmental sciences (China), 19 (2007) 818-826. https://doi.org/10.1016/S1001-0742(07)60137-5
[33]. J. L. Jimenez-Palacios, Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing, Massachusetts Institute of Technology, Cambridge, MA, 1999.
[34]. L. A. Son, J. Zhang ,A. Fujiwara, The MATLAB Toolbox for GPS Data to Calculate Motorcycle Emission in Hanoi - Vietnam, Singapore, 2012.
[35]. G. O. Duarte, G. A. Gonçalves ,T. L. Farias, A methodology to estimate real-world vehicle fuel use and emissions based on certification cycle data, Procedia-Social and Behavioral Sciences, 111 (2014) 702-710. http://doi.org/10.1016/j.sbspro.2014.01.104
[36]. Intergovernmental Panel on Climate Change (IPCC), 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2019. https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html
[37]. GIZ, Advancing Transport Climate Strategies in Rapidly Motorising Countries (TraCS), 2018.
[38]. Intergovernmental Panel on Climate Change (IPCC), IPCC Sixth Assessment Report. Chapter 7: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity, 2024. https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-7/#7.6
[39]. M. Eliasson, A Kalman filter approach to reduce position error for pedestrian applications in areas of bad GPS reception, Department of Computing Science, Umeå University, Sweden, 2014.
[40]. Y.-L. T. Nguyen, T.-D. Nghiem, A.-T. Le ,N.-D. Bui, Development of the typical driving cycle for buses in Hanoi, Vietnam, Journal of the Air & Waste Management Association, 69 (2019) 423-437. https://doi.org/10.1080/10962247.2018.1543736
[41]. Y.-L. Nguyen T., K. Nguyen Duc, A.-T. Le, H.-Y. Than T. ,Q. Cao Minh, A cost-effective solution to estimate fuel consumption and greenhouse gas emissions for motorcycles: a case study, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45 (2023) 9202-9216.
[42]. C. T. Dung, T. Miwa, H. Sato ,T. Morikawa, Analysis on Characteristics of Passenger Car and Motorcycle Fleets and Their Driving Conditions in Developing Country: A Case Study in Ho Chi Minh City, Vietnam, Journal of the Eastern Asia Society for Transportation Studies, 11 (2015) 890-905. http://dx.doi.org/10.11175/easts.11.890.
[43]. Y.-L. T. Nguyen, K. N. Duc, A.-T. Le, T.-D. Nghiem, H.-Y. T. Than, Impact of real-world driving characteristics on the actual fuel consumption of motorcycles and implications for traffic-related air pollution control in Vietnam, Fuel, 345 (2023) 128256. https://doi.org/10.1016/j.fuel.2023.128256.
[44]. Y.-L. T. Nguyen, K. N. Duc, A.-T. Le, T.-D. Nghiem, H.-Y. T. Than, Impact of real-world driving characteristics on the actual fuel consumption of motorcycles and implications for traffic-related air pollution control in Vietnam, Fuel, 345 (2023) 1-12. https://doi.org/10.1016/j.fuel.2023.128256
[45]. H. D. Tung, H. Y. Tong, W. T. Hung, N. T. N. Anh, Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam, Science of the Total Environment, 409 (2011) 2761–2767. http://doi.org/10.1016/j.scitotenv.2011.04.013
[46]. Tổ chức Hợp tác quốc tế Đức (GIZ), Kịch bản hướng tới phát thải ròng bằng "0" trong ngành giao thông vận tải tại Việt Nam, 2024.
[2]. J. E. Oh, M. J. Dos Anjos Ribeiro Cordeiro, J. A. Rogers, K. Nguyen, D. Bongardt, L. T. Dang ,V. A. Tuan, Addressing Climate Change in Transport: Volume 1 : Pathway to Low-Carbon Transport The World Bank and Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH, 2019. http://documents.worldbank.org/curated/en/581131568121810607/Volume-1-Pathway-to-Low-Carbon-Transport
[3]. Chương trình Quốc gia về Năng lượng tiết kiệm và hiệu quả (VNEEP), Thống kê năng lượng Việt Nam, 2021.
[4]. Viện chiến lược và phát triển giao thông vận tải (TDSI), Niên giám thống kê vận tải và Logistics, NXB GTVT, 2020.
[5]. Đ.H. Nguyễn, T. Michimasa, H.L. Bùi, T.L.H. Nguyễn, B.N. Nguyễn, T.T. Lưu, T.D. Nguyễn, Báo cáo dự án: Nghiên cứu hiện trạng giao thông xe máy tại VIệt Nam. Mã số: TRN/FAC/12/006/REG, Bộ Giao thông vận tải, 2019.
[6]. Huong Le, F. Posada ,Z. Yang, Electric two-wheeler market growth in Vietnam: An overview, International Council on Clean Transportation, (2022).
[7]. Intergovernmental Panel on Climate Change (IPCC), 2006 IPCC guidelines for national greenhouse gas inventories. Vol 2: Energy, 2006.
[8]. T. T. Nguyen, T. D. Nghiem ,T. T. Tran, Potentiality of Co-benefits of climate and air quality in fuel switching for Hanoi bus system, Journal of Science and Technology, 49 (2011) 117-128. https://doi.org/10.15625/0866-708X
[9]. N. T. Y. Lien ,N. T. Dung, Health co-benefits of climate change mitigation for the bus system of Hanoi, Vietnam Journal of Science and Technology, 56 (2018) 312-323. http://doi.org/10.15625/2525-2518/56/3/9398
[10]. T. D. Nghiem, T. N. Tran ,T. T. Tran, Co-benefits of air quality and climate for taxi system in Hanoi associated with selected control scenarios, Journal of Science and Technology, 51 (2013) 104-111.
[11]. N. T. Kim Oanh, M. T. T. Phuong, D. A. Permadi, Analysis of motorcycle fleet in Hanoi for estimation of air pollution emission and climate mitigation co-benefit of technology implementation, Atmospheric environment, 59 (2012) 438-448. http://doi.org/10.1016/j.atmosenv.2012.04.057
[12]. N. T. Kim Oanh ,H. V. Huynh, Comparative Assessment of Traffic Fleets in Asian Cities for Emission Inventory and Analysis of Co-Benefit from Faster Vehicle Technology Intrusion, (2015) http://doi.org/10.13140/RG.2.1.1545.5764.
[13]. Y. L. T. Nguyen, H. Y. T. Than, Estimating the greenhouse gas emission factor of motorcycles under real-world driving conditions in Hanoi: a case study, Transport and Communications Science Journal, 74 (2023) 764-774. https://doi.org/10.47869/tcsj.74.7.1
[14]. International Sustainable Systems Research Center, International Vehicle Emissions (IVE): Model Overview and Model Users Manual, 2008. http://www.issrc.org/ive/
[15]. D. A. Niemeier, T. Limanond ,E. J. Morey, Data collection for driving cycle development: evaluation of data collection protocols, Institute of Transportation Studies, University of California at Davis, 1999.
[16]. J. Jun, R. Guensler ,J. Ogle, Smoothing Methods Designed to Minimize the Impact of GPS Random Error on Travel Distance, Speed, and Acceleration Profile Estimates Transportation Research Record: Journal of the Transportation Research Board, 1972 (2006) 141-150. https://doi.org/10.1177/0361198106197200117.
[17]. J. Ogle, R. Guensler, W. Bachman, M. Koutsak ,J. Wolf, Accuracy of Global Positioning System for Determining Driver Performance Parameters, Transportation Research Record: Journal of the Transportation Research Board, 1818 (2002) 12-24. https://doi.org/10.3141/1818-03
[18]. H. Y. Tong ,W. T. Hung, A Framework for Developing Driving Cycles with On-Road Driving Data, Transport Reviews: A Transnational Transdisciplinary Journal, 30 (2010) 589-615. http://dx.doi.org/10.1080/01441640903286134.
[19]. N. T. Yen-Lien, K. N. Duc, Q. C. Minh, Y. T. T. Hai ,M. B. Le Hong, A study on the determination of the real-world driving characteristics of motorcycles in Hanoi, Transport and Communications Science Journal, 73 (2022) 412-426. https://doi.org/10.47869/tcsj.73.4.6
[20]. Le Anh-Tuan, P. M. Tuan, N. T. Truc ,N. D. Vinh, Measurements of Emission factors and Fuel Consumption for Motocycles on a Chassis Dynamometer based on a localized driving cycle, ASEAN Engineering Journal Part C, 1 (2012) 73-85.
[21]. S.-H. Ho, Y.-D. Wong ,V. W.-C. Chang, Developing Singapore Driving Cycle for passenger car to estimate fuel consumption and vehicular emissions, Atmospheric Environment, 97 (2014) 335-362.
[22]. A. Duran ,M. Earleywine, GPS Data Filtration Method for Drive Cycle Analysis Applications, SAE 2012 World Congress, 2012.
[23]. C. Lin, X. Zhou, D. Wu ,B. Gong, Estimation of Emissions at Signalized Intersections Using an Improved MOVES Model with GPS Data, International Journal of Environmental Research and Public Health, 16 (2019) 3647. http://doi.org/10.3390/ijerph16193647.
[24]. Nguyễn Thị Yến Liên, Nghiên cứu ảnh hưởng của các phương thức lái đến mức tiêu hao nhiên liệu ngoài thực tế đối với xe máy. Đề tài NCKH cấp Trường trọng điểm, mã số: T2022-MT-013TĐ, Trường Đại học Giao thông vận tải, 2023.
[25]. Viện Khoa học và Công nghệ giao thông vận tải, Nghiên cứu thí điểm kiểm tra khí thải xe mô tô, xe gắn máy và thu hồi xe mô tô, xe gắn máy cũ đang lưu hành trên địa bàn thành phố Hà Nội góp phần bảo vệ môi trường không khí, 2022.
[26]. Viện Khoa học và Công nghệ giao thông vận tải, Nghiên cứu thực trạng phát thải của xe máy đang lưu hành hướng tới kiểm soát khí thải, góp phần cải thiện chất lượng môi trường không khí, 2018..
[27]. Tổng Cục thống kê, Số liệu thống kê về đơn vị hành chính, đất đai và khí hậu, 2024. https://www.gso.gov.vn/so-lieu-thong-ke/.
[28]. J. Jungwook, G. Randall ,O. Jennifer, Smoothing Methods Designed to Minimize the Impact of GPS Random Error on Travel Distance, Speed, and Acceleration Profile Estimates Transportation Research Record: Journal of the Transportation Research Board, 1972 (2006) 141-150. http://dx.doi.org/10.3141/1972-19.
[29]. I. Selesnick, Least Squares with Examples in Signal Processing, 2013. https://eeweb.engineering.nyu.edu/iselesni/lecture_notes/least_squares/least_squares_SP.pdf
[30]. Y.-L. T. Nguyen, N.-D. Bui, T.-D. Nghiem ,A.-T. Le, GPS data processing for driving cycle development in Hanoi, Vietnam, Journal of Engineering Science and Technology (JESTEC), 15 (2020) 1429 - 1440.
[31]. W. F. Faris, H. A. Rakha, R. I. Kafafy, M. Idres ,S. Elmoselhy, Vehicle fuel consumption and emission modelling: an in-depth literature review, International Journal of Vehicle Systems Modelling and Testing, 6 (2011) 318-395. http://doi.org/10.1504/IJVSMT.2011.044232.
[32]. H. Guo, Q.-y. Zhang, Y. Shi ,D.-h. Wang, Evaluation of the International Vehicle Emission (IVE) model with on-road remote sensing measurements, Journal of environmental sciences (China), 19 (2007) 818-826. https://doi.org/10.1016/S1001-0742(07)60137-5
[33]. J. L. Jimenez-Palacios, Understanding and quantifying motor vehicle emissions with vehicle specific power and TILDAS remote sensing, Massachusetts Institute of Technology, Cambridge, MA, 1999.
[34]. L. A. Son, J. Zhang ,A. Fujiwara, The MATLAB Toolbox for GPS Data to Calculate Motorcycle Emission in Hanoi - Vietnam, Singapore, 2012.
[35]. G. O. Duarte, G. A. Gonçalves ,T. L. Farias, A methodology to estimate real-world vehicle fuel use and emissions based on certification cycle data, Procedia-Social and Behavioral Sciences, 111 (2014) 702-710. http://doi.org/10.1016/j.sbspro.2014.01.104
[36]. Intergovernmental Panel on Climate Change (IPCC), 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2019. https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html
[37]. GIZ, Advancing Transport Climate Strategies in Rapidly Motorising Countries (TraCS), 2018.
[38]. Intergovernmental Panel on Climate Change (IPCC), IPCC Sixth Assessment Report. Chapter 7: The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity, 2024. https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-7/#7.6
[39]. M. Eliasson, A Kalman filter approach to reduce position error for pedestrian applications in areas of bad GPS reception, Department of Computing Science, Umeå University, Sweden, 2014.
[40]. Y.-L. T. Nguyen, T.-D. Nghiem, A.-T. Le ,N.-D. Bui, Development of the typical driving cycle for buses in Hanoi, Vietnam, Journal of the Air & Waste Management Association, 69 (2019) 423-437. https://doi.org/10.1080/10962247.2018.1543736
[41]. Y.-L. Nguyen T., K. Nguyen Duc, A.-T. Le, H.-Y. Than T. ,Q. Cao Minh, A cost-effective solution to estimate fuel consumption and greenhouse gas emissions for motorcycles: a case study, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45 (2023) 9202-9216.
[42]. C. T. Dung, T. Miwa, H. Sato ,T. Morikawa, Analysis on Characteristics of Passenger Car and Motorcycle Fleets and Their Driving Conditions in Developing Country: A Case Study in Ho Chi Minh City, Vietnam, Journal of the Eastern Asia Society for Transportation Studies, 11 (2015) 890-905. http://dx.doi.org/10.11175/easts.11.890.
[43]. Y.-L. T. Nguyen, K. N. Duc, A.-T. Le, T.-D. Nghiem, H.-Y. T. Than, Impact of real-world driving characteristics on the actual fuel consumption of motorcycles and implications for traffic-related air pollution control in Vietnam, Fuel, 345 (2023) 128256. https://doi.org/10.1016/j.fuel.2023.128256.
[44]. Y.-L. T. Nguyen, K. N. Duc, A.-T. Le, T.-D. Nghiem, H.-Y. T. Than, Impact of real-world driving characteristics on the actual fuel consumption of motorcycles and implications for traffic-related air pollution control in Vietnam, Fuel, 345 (2023) 1-12. https://doi.org/10.1016/j.fuel.2023.128256
[45]. H. D. Tung, H. Y. Tong, W. T. Hung, N. T. N. Anh, Development of emission factors and emission inventories for motorcycles and light duty vehicles in the urban region in Vietnam, Science of the Total Environment, 409 (2011) 2761–2767. http://doi.org/10.1016/j.scitotenv.2011.04.013
[46]. Tổ chức Hợp tác quốc tế Đức (GIZ), Kịch bản hướng tới phát thải ròng bằng "0" trong ngành giao thông vận tải tại Việt Nam, 2024.
Downloads
Download data is not yet available.
Received
04/03/2025
Revised
25/03/2025
Accepted
10/04/2025
Published
15/04/2025
Type
Research Article
How to Cite
Vũ Thị Ngọc, A., Vũ Thị, M., Nguyễn Trọng, H., Bùi Lê Hồng, M., Thân Thị Hải, Y., & Nguyễn Thị Yến, L. (1744650000). Application of IVE software to estimate greenhouse gas emissions from motorcycles in Hanoi. Transport and Communications Science Journal, 76(3), 213-227. https://doi.org/10.47869/tcsj.76.3.2
Abstract Views
132
Total Galley Views
63





