Fracture response of concrete containing carbon nanotubes under various loading conditions
Email:
dangvanphi@humg.edu.vn
Từ khóa:
Fracture characteristics, carbon nanotubes, impact loading, dynamic increase factors
Tóm tắt
The demand for high-performance cementitious materials capable of sustaining extreme mechanical loads has intensified in recent years, as conventional concrete often suffers from brittle fracture and limited durability under dynamic actions. Nanomaterials such as carbon nanotubes (CNTs) have emerged as promising additives owing to their remarkable mechanical and interfacial properties, offering the potential to enhance the fracture resistance of ultra-high-performance fiber-reinforced concretes (UHPFRCs). This study explores the fracture durability of UHPFRCs incorporating CNTs under both static and impact loading conditions. Mixtures were prepared with CNT dosages ranging from 0% to 1.5% by cement weight, and fracture behavior was evaluated through fracture strength (ft), specific work of fracture (WS), total fracture energy (WE), and softening fracture energy (WF). The experimental results indicated that CNT addition substantially improved fracture resistance, particularly tensile strength, across all loading rates. The mixture containing 1.0% CNTs achieved the highest fracture strength and exhibited the maximum dynamic increase factor (DIF) compared with the control and other CNT dosages. Furthermore, fracture parameters ft, WS, and WE demonstrated pronounced sensitivity to loading rate, with DIF values ranging from 1.21 to 4.50, while WF remained nearly unchanged, with DIF values between 0.90 and 0.98. These outcomes confirm that CNTs strengthen the fiber–matrix interfacial zone, leading to more efficient stress transfer and improved durability. The findings provide valuable insights for the design of UHPFRCs with superior performance under both static and impact loads, contributing to the development of resilient structural materialsTài liệu tham khảo
[1 ]. T.K. Tran, D.J. Kim, High strain rate effects on direct tensile behavior of high performance fiber reinforced cementitious composites, Cem. Concr. Compos., 45 (2014) 186–200. https://doi.org/10.1016/j.cemconcomp.2013.10.005
[2 ]. S. Pyo, S. El-Tawil, A.E. Naaman, Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates, Cem. Concr. Res., 88 (2016) 144–156. https://doi.org/10.1016/j.cemconres.2016.07.003
[3 ]. N.T. Tran, T.K. Tran, J.K. Jeon, J.K. Park, D.J. Kim, Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates, Cem. Concr. Res., 79 (2016) 169–184. https://doi.org/10.1016/j.cemconres.2015.09.011
[4 ]. R. Yu, P. Spiesz, H.J.H. Brouwers, Static properties and impact resistance of a green ultra-high performance hybrid fibre reinforced concrete (UHPHFRC): Experiments and modeling, Constr. Build. Mater., 68 (2014) 158–171. https://doi.org/10.1016/j.conbuildmat.2014.06.033
[5 ]. Y. Ju, H. Liu, G. Sheng, H. Wang, Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts, Sci. China Technol. Sci., 53 (2010) 2435–2449. https://doi.org/10.1007/s11431-010-4061-x
[6 ]. Y. Ruan, B. Han, X. Yu, Z. Li, J. Wang, S. Dong, J. Ou, Mechanical behaviors of nano-zirconia reinforced reactive powder concrete under compression and flexure, Constr. Build. Mater., 162 (2018) 663–673. https://doi.org/10.1016/j.conbuildmat.2017.12.063
[7 ]. E.E. Gdoutos, M.S. Konsta-Gdoutos, P.A. Danoglidis, Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study, Cem. Concr. Compos., 70 (2016) 110–118. https://doi.org/10.1016/j.cemconcomp.2016.03.010
[8 ]. P. Stynoski, P. Mondal, C. Marsh, Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar, Cem. Concr. Compos., 55 (2015) 232–240. https://doi.org/10.1016/j.cemconcomp.2014.08.005
[9 ]. U. De Maio, N. Fantuzzi, F. Greco, L. Leonetti, A. Pranno, Failure analysis of ultra high-performance fiber-reinforced concrete structures enhanced with nanomaterials by using a diffuse cohesive interface approach, Nanomaterials, 10 (2020) 1–23. https://doi.org/10.3390/nano10091792
[10 ]. V.P. Dang, D.J. Kim, Effects of nanoparticles on the tensile behavior of ultra-high-performance fiber-reinforced concrete at high strain rates, J. Build. Eng., 63 (2023) 105513. https://doi.org/10.1016/j.jobe.2022.105513
[11 ]. W. Li, Z. Huang, F. Cao, Z. Sun, S.P. Shah, Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix, Constr. Build. Mater., 95 (2015) 366–374. https://doi.org/10.1016/j.conbuildmat.2015.05.137
[12 ]. Z. Wu, K.H. Khayat, C. Shi, Effect of nano-SiO2 particles and curing time on development of bond properties and microstructure of ultra-high strength concrete, Cem. Concr. Res., 95 (2017) 247–256. https://doi.org/10.1016/j.cemconres.2017.02.031
[13 ]. Z. Wu, C. Shi, K.H. Khayat, Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high performance concrete with nano-CaCO3 particles, Cem. Concr. Compos., 86 (2018) 255–265. https://doi.org/10.1016/j.cemconcomp.2017.11.014
[14 ]. K. Wille, K.J. Loh, Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes, Transp. Res. Rec., 2142 (2010) 119–126. https://doi.org/10.3141/2142-18
[15 ]. V.P. Dang, D.J. Kim, Rate-sensitive pullout resistance of smooth steel fibers embedded in ultra-high-performance concrete containing nanoparticles, Concr. Cem. Concr. Compos., (2023). https://doi.org/10.1016/j.cemconcomp.2023.105109
[16 ]. V.P. Dang, D.J. Kim, Fracture resistance of ultra-high-performance fiber-reinforced concrete containing nanoparticles at high strain rates, Eng. Fract. Mech., 289 (2023) 109436. https://doi.org/10.1016/j.engfracmech.2023.109436
[17 ]. S.Y. Lee, H.V. Le, D.J. Kim, Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress, Constr. Build. Mater., 220 (2019) 149–160. https://doi.org/10.1016/j.conbuildmat.2019.05.197
[18 ]. T.K. Tran, D.J. Kim, Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates, Cem. Concr. Res., 50 (2013) 62–73. https://doi.org/10.1016/j.cemconres.2013.03.018
[19 ]. N.T. Tran, T.K. Tran, D.J. Kim, High rate response of ultra-high-performance fiber-reinforced concretes under direct tension, Cem. Concr. Res., 69 (2015) 72–87. https://doi.org/10.1016/j.cemconres.2014.12.008
[20 ]. S.H. Park, D.J. Kim, S.W. Kim, Investigating the impact resistance of ultra-high-performance fiber-reinforced concrete using an improved strain energy impact test machine, Constr. Build. Mater., 125 (2016) 145–159. https://doi.org/10.1016/j.conbuildmat.2016.08.027
[21 ]. T.K. Tran, D.J. Kim, Strain energy frame impact machine (SEFIM), J. Adv. Concr. Technol., 10 (2012) 126–136. https://doi.org/10.3151/jact.10.126
[22 ]. Z. Wu, K.H. Khayat, C. Shi, B.F. Tutikian, Q. Chen, Mechanisms underlying the strength enhancement of UHPC modified with nano-SiO2 and nano-CaCO3, Cem. Concr. Compos., 119 (2021) 103992. https://doi.org/10.1016/j.cemconcomp.2021.103992
[23 ]. J.K. Park, S.W. Kim, D.J. Kim, Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact, Compos. Struct., 162 (2017) 313–324. https://doi.org/10.1016/j.compstruct.2016.12.022
[24 ]. V.P. Dang, H.V. Le, D.J. Kim, Loading rate effects on the properties of fiber-matrix zone surrounding steel fibers and cement based matrix, Constr. Build. Mater., 283 (2021) 122694. https://doi.org/10.1016/j.conbuildmat.2021.122694
[25 ]. E. Cadoni, A. Meda, G.A. Plizzari, Tensile behaviour of FRC under high strain-rate, Mater. Struct. Constr., 42 (2009) 1283–1294. https://doi.org/10.1617/s11527-009-9527-6
[26 ]. H.F.W. Taylor, Cement chemistry, 2nd ed., Thomas Telford, London, 1997.
[27 ]. Z. Wu, C. Shi, K.H. Khayat, S. Wan, Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC), Cem. Concr. Compos., 70 (2016) 24–34. https://doi.org/10.1016/j.cemconcomp.2016.03.003
[2 ]. S. Pyo, S. El-Tawil, A.E. Naaman, Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates, Cem. Concr. Res., 88 (2016) 144–156. https://doi.org/10.1016/j.cemconres.2016.07.003
[3 ]. N.T. Tran, T.K. Tran, J.K. Jeon, J.K. Park, D.J. Kim, Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates, Cem. Concr. Res., 79 (2016) 169–184. https://doi.org/10.1016/j.cemconres.2015.09.011
[4 ]. R. Yu, P. Spiesz, H.J.H. Brouwers, Static properties and impact resistance of a green ultra-high performance hybrid fibre reinforced concrete (UHPHFRC): Experiments and modeling, Constr. Build. Mater., 68 (2014) 158–171. https://doi.org/10.1016/j.conbuildmat.2014.06.033
[5 ]. Y. Ju, H. Liu, G. Sheng, H. Wang, Experimental study of dynamic mechanical properties of reactive powder concrete under high-strain-rate impacts, Sci. China Technol. Sci., 53 (2010) 2435–2449. https://doi.org/10.1007/s11431-010-4061-x
[6 ]. Y. Ruan, B. Han, X. Yu, Z. Li, J. Wang, S. Dong, J. Ou, Mechanical behaviors of nano-zirconia reinforced reactive powder concrete under compression and flexure, Constr. Build. Mater., 162 (2018) 663–673. https://doi.org/10.1016/j.conbuildmat.2017.12.063
[7 ]. E.E. Gdoutos, M.S. Konsta-Gdoutos, P.A. Danoglidis, Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: A fracture mechanics experimental study, Cem. Concr. Compos., 70 (2016) 110–118. https://doi.org/10.1016/j.cemconcomp.2016.03.010
[8 ]. P. Stynoski, P. Mondal, C. Marsh, Effects of silica additives on fracture properties of carbon nanotube and carbon fiber reinforced Portland cement mortar, Cem. Concr. Compos., 55 (2015) 232–240. https://doi.org/10.1016/j.cemconcomp.2014.08.005
[9 ]. U. De Maio, N. Fantuzzi, F. Greco, L. Leonetti, A. Pranno, Failure analysis of ultra high-performance fiber-reinforced concrete structures enhanced with nanomaterials by using a diffuse cohesive interface approach, Nanomaterials, 10 (2020) 1–23. https://doi.org/10.3390/nano10091792
[10 ]. V.P. Dang, D.J. Kim, Effects of nanoparticles on the tensile behavior of ultra-high-performance fiber-reinforced concrete at high strain rates, J. Build. Eng., 63 (2023) 105513. https://doi.org/10.1016/j.jobe.2022.105513
[11 ]. W. Li, Z. Huang, F. Cao, Z. Sun, S.P. Shah, Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix, Constr. Build. Mater., 95 (2015) 366–374. https://doi.org/10.1016/j.conbuildmat.2015.05.137
[12 ]. Z. Wu, K.H. Khayat, C. Shi, Effect of nano-SiO2 particles and curing time on development of bond properties and microstructure of ultra-high strength concrete, Cem. Concr. Res., 95 (2017) 247–256. https://doi.org/10.1016/j.cemconres.2017.02.031
[13 ]. Z. Wu, C. Shi, K.H. Khayat, Multi-scale investigation of microstructure, fiber pullout behavior, and mechanical properties of ultra-high performance concrete with nano-CaCO3 particles, Cem. Concr. Compos., 86 (2018) 255–265. https://doi.org/10.1016/j.cemconcomp.2017.11.014
[14 ]. K. Wille, K.J. Loh, Nanoengineering ultra-high-performance concrete with multiwalled carbon nanotubes, Transp. Res. Rec., 2142 (2010) 119–126. https://doi.org/10.3141/2142-18
[15 ]. V.P. Dang, D.J. Kim, Rate-sensitive pullout resistance of smooth steel fibers embedded in ultra-high-performance concrete containing nanoparticles, Concr. Cem. Concr. Compos., (2023). https://doi.org/10.1016/j.cemconcomp.2023.105109
[16 ]. V.P. Dang, D.J. Kim, Fracture resistance of ultra-high-performance fiber-reinforced concrete containing nanoparticles at high strain rates, Eng. Fract. Mech., 289 (2023) 109436. https://doi.org/10.1016/j.engfracmech.2023.109436
[17 ]. S.Y. Lee, H.V. Le, D.J. Kim, Self-stress sensing smart concrete containing fine steel slag aggregates and steel fibers under high compressive stress, Constr. Build. Mater., 220 (2019) 149–160. https://doi.org/10.1016/j.conbuildmat.2019.05.197
[18 ]. T.K. Tran, D.J. Kim, Investigating direct tensile behavior of high performance fiber reinforced cementitious composites at high strain rates, Cem. Concr. Res., 50 (2013) 62–73. https://doi.org/10.1016/j.cemconres.2013.03.018
[19 ]. N.T. Tran, T.K. Tran, D.J. Kim, High rate response of ultra-high-performance fiber-reinforced concretes under direct tension, Cem. Concr. Res., 69 (2015) 72–87. https://doi.org/10.1016/j.cemconres.2014.12.008
[20 ]. S.H. Park, D.J. Kim, S.W. Kim, Investigating the impact resistance of ultra-high-performance fiber-reinforced concrete using an improved strain energy impact test machine, Constr. Build. Mater., 125 (2016) 145–159. https://doi.org/10.1016/j.conbuildmat.2016.08.027
[21 ]. T.K. Tran, D.J. Kim, Strain energy frame impact machine (SEFIM), J. Adv. Concr. Technol., 10 (2012) 126–136. https://doi.org/10.3151/jact.10.126
[22 ]. Z. Wu, K.H. Khayat, C. Shi, B.F. Tutikian, Q. Chen, Mechanisms underlying the strength enhancement of UHPC modified with nano-SiO2 and nano-CaCO3, Cem. Concr. Compos., 119 (2021) 103992. https://doi.org/10.1016/j.cemconcomp.2021.103992
[23 ]. J.K. Park, S.W. Kim, D.J. Kim, Matrix-strength-dependent strain-rate sensitivity of strain-hardening fiber-reinforced cementitious composites under tensile impact, Compos. Struct., 162 (2017) 313–324. https://doi.org/10.1016/j.compstruct.2016.12.022
[24 ]. V.P. Dang, H.V. Le, D.J. Kim, Loading rate effects on the properties of fiber-matrix zone surrounding steel fibers and cement based matrix, Constr. Build. Mater., 283 (2021) 122694. https://doi.org/10.1016/j.conbuildmat.2021.122694
[25 ]. E. Cadoni, A. Meda, G.A. Plizzari, Tensile behaviour of FRC under high strain-rate, Mater. Struct. Constr., 42 (2009) 1283–1294. https://doi.org/10.1617/s11527-009-9527-6
[26 ]. H.F.W. Taylor, Cement chemistry, 2nd ed., Thomas Telford, London, 1997.
[27 ]. Z. Wu, C. Shi, K.H. Khayat, S. Wan, Effects of different nanomaterials on hardening and performance of ultra-high strength concrete (UHSC), Cem. Concr. Compos., 70 (2016) 24–34. https://doi.org/10.1016/j.cemconcomp.2016.03.003
Tải xuống
Chưa có dữ liệu thống kê

Nhận bài
16/05/2025
Nhận bài sửa
07/08/2025
Chấp nhận đăng
10/09/2025
Xuất bản
15/09/2025
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Dang Van, P., Pham Duc, T., & Nguyen Manh, T. (1757869200). Fracture response of concrete containing carbon nanotubes under various loading conditions. Tạp Chí Khoa Học Giao Thông Vận Tải, 76(7), 1010-1022. https://doi.org/10.47869/tcsj.76.7.7