Determine the influence factor of geometrical parameters on the dynamic characteristics of the micro crab-shaped beam
Email:
thom.dovan@lqdtu.edu.vn
Từ khóa:
FEM analysis; micro-beam; equivalent stiffness; Crab-shaped beam
Tóm tắt
Microelectromechanical devices are being used much more in science and technology to reduce energy consumption and increase accuracy. The design of mechanical structures in these devices requires reducing the cost of testing and prototype manufacturing. It is necessary to define the essential parameters in designing the microstructures to reduce the design time. This paper presents a simulation method to determine the influence of the geometrical parameters of the micro-beam models with Crab-shaped used in the micro-mechanical structures on the equivalent stiffness. The significant parameters influencing the rapid change of equivalent stiffness are shown using the local sensitivity analysis technique and the surface response in the ANSYS Workbench. The results show that the length of the sensing bar with the convex curve and the maximum deviation is 76% for the equivalent stiffness, while the width of the beam with the concave curve gives the maximum value of 400% at the same 70% of the variation of each geometrical parameter. The local sensitivity analysis values for the length of the driving and sensing bar, and the width of the crab-shaped beam are -1.4485, -0.2786, and +2.0355, respectively. These analysis results are essential for choosing the suitable value for the geometrical parameters of the micromechanical structure according to the proposed resonant frequency in further studiesTài liệu tham khảo
[1]. D. Van Hieu, L. Van Tam, N. Van Duong, N. Duy Vy, C. Manh Hoang, Design and Simulation Analysis of A Z Axis Microactuator with Low Mode Cross-Talk, Journal of Mechanics, 36 (2020) 881-888. https://doi.org/10.1017/jmech.2020.48
[2]. H. Din, F. Iqbal, B. Lee, Modelling and optimization of single drive 3-axis MEMS gyroscope, Microsyst Technol, 26 (2020) 2869-2877. https://doi.org/10.1007/s00542-020-04840-7
[3]. V. H. Dang, V. T. Le, K. Hane, M. H. Chu, Design and simulation analysis of an integrated xyz micro-actuator for controlling displacement of a scanning probe, Journal of Theoretical and Applied Mechanics, 59 (2021) 143-156. https://doi.org/10.15632/jtam-pl/130549
[4]. Vu Van The, Chu Duc Trinh, Determine the dynamic parameters in the mechanical system of the crab-shaped MEMS vibratory gyroscope, Microsyst Technol, 27 (2021) 3429-3435. https://doi.org/10.1007/s00542-020-05128-6
[5]. A. Biswas, V.S. Pawar, P.K. Menon et al., Influence of fabrication tolerances on performance characteristics of a MEMS gyroscope, Microsyst Technol, 27 (2021) 2679–2693. https://doi.org/10.1007/s00542-020-05059-2
[6]. D.T. Nguyen, K.T. Hoang, P.H. Pham, Larger displacement of silicon electrothermal V-shaped actuator using surface sputtering process. Microsyst Technol, 27 (2021) 1985–1991. https://doi.org/10.1007/s00542-020-04985-5
[7]. S.S. Saberhosseini, B. Azizollah Ganji, J. Koohsorkhi, et al, The mechanical modeling of a special variable MEMS capacitor, Microsyst Technol, 27 (2021) 813–820. https://doi.org/10.1007/s00542-020-04969-5
[8]. L.M. Cao, Jw. Li, Xw. Liu et al, Research on an Anchor Point Lever Beam Coupling Type Tuning Fork Micro-gyroscope, Int. J. Precis. Eng. Manuf., 21 (2020) 1099–1111. https://doi.org/10.1007/s12541-020-00327-7
[9]. H. Din, F. Iqbal, B, Lee, Modelling and optimization of single drive 3-axis MEMS gyroscope. Microsyst Technol, 26 (2020) 2869–2877. https://doi.org/10.1007/s00542-020-04840-7
[10]. K.T. Hoang, D.T. Nguyen, P.H Pham, Impact of design parameters on working stability of the electrothermal V-shaped actuator, Microsyst Technol, 26 (2020) 1479–1487. https://doi.org/10.1007/s00542-019-04682-y
[11]. James J. Allen, Micro electro mechanical system design. CRC Press, Taylor&Francis Group, ISBN 0-306-47601-0 (2005).
[12]. P.H. Cong, D.H. Duc, D.V. Thom, Phase field model for fracture based on modified couple stress, Eng. Fract. Mech., 269 (2022) 108534. https://doi.org/10.1016/j.engfracmech.2022.108534
[13]. D.H. Duc, D.V. Thom, P.M. Phuc, Buckling analysis of variable thickness cracked nanoplatesconsiderting the flexoelectric effect, Transp. Comm Science J., 73 (2022) 470-485. https://doi.org/10.47869/tcsj.73.5.3
[14]. Cenk Acar, Andrei Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, ISBN 978-0-387-09535-6 (2008).
[2]. H. Din, F. Iqbal, B. Lee, Modelling and optimization of single drive 3-axis MEMS gyroscope, Microsyst Technol, 26 (2020) 2869-2877. https://doi.org/10.1007/s00542-020-04840-7
[3]. V. H. Dang, V. T. Le, K. Hane, M. H. Chu, Design and simulation analysis of an integrated xyz micro-actuator for controlling displacement of a scanning probe, Journal of Theoretical and Applied Mechanics, 59 (2021) 143-156. https://doi.org/10.15632/jtam-pl/130549
[4]. Vu Van The, Chu Duc Trinh, Determine the dynamic parameters in the mechanical system of the crab-shaped MEMS vibratory gyroscope, Microsyst Technol, 27 (2021) 3429-3435. https://doi.org/10.1007/s00542-020-05128-6
[5]. A. Biswas, V.S. Pawar, P.K. Menon et al., Influence of fabrication tolerances on performance characteristics of a MEMS gyroscope, Microsyst Technol, 27 (2021) 2679–2693. https://doi.org/10.1007/s00542-020-05059-2
[6]. D.T. Nguyen, K.T. Hoang, P.H. Pham, Larger displacement of silicon electrothermal V-shaped actuator using surface sputtering process. Microsyst Technol, 27 (2021) 1985–1991. https://doi.org/10.1007/s00542-020-04985-5
[7]. S.S. Saberhosseini, B. Azizollah Ganji, J. Koohsorkhi, et al, The mechanical modeling of a special variable MEMS capacitor, Microsyst Technol, 27 (2021) 813–820. https://doi.org/10.1007/s00542-020-04969-5
[8]. L.M. Cao, Jw. Li, Xw. Liu et al, Research on an Anchor Point Lever Beam Coupling Type Tuning Fork Micro-gyroscope, Int. J. Precis. Eng. Manuf., 21 (2020) 1099–1111. https://doi.org/10.1007/s12541-020-00327-7
[9]. H. Din, F. Iqbal, B, Lee, Modelling and optimization of single drive 3-axis MEMS gyroscope. Microsyst Technol, 26 (2020) 2869–2877. https://doi.org/10.1007/s00542-020-04840-7
[10]. K.T. Hoang, D.T. Nguyen, P.H Pham, Impact of design parameters on working stability of the electrothermal V-shaped actuator, Microsyst Technol, 26 (2020) 1479–1487. https://doi.org/10.1007/s00542-019-04682-y
[11]. James J. Allen, Micro electro mechanical system design. CRC Press, Taylor&Francis Group, ISBN 0-306-47601-0 (2005).
[12]. P.H. Cong, D.H. Duc, D.V. Thom, Phase field model for fracture based on modified couple stress, Eng. Fract. Mech., 269 (2022) 108534. https://doi.org/10.1016/j.engfracmech.2022.108534
[13]. D.H. Duc, D.V. Thom, P.M. Phuc, Buckling analysis of variable thickness cracked nanoplatesconsiderting the flexoelectric effect, Transp. Comm Science J., 73 (2022) 470-485. https://doi.org/10.47869/tcsj.73.5.3
[14]. Cenk Acar, Andrei Shkel, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, ISBN 978-0-387-09535-6 (2008).
Tải xuống
Chưa có dữ liệu thống kê

Nhận bài
31/03/2025
Nhận bài sửa
24/04/2025
Chấp nhận đăng
10/05/2025
Xuất bản
15/05/2025
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Vu Van, T., & Do Van, T. (1747242000). Determine the influence factor of geometrical parameters on the dynamic characteristics of the micro crab-shaped beam. Tạp Chí Khoa Học Giao Thông Vận Tải, 76(4), 530-540. https://doi.org/10.47869/tcsj.76.4.7
Số lần xem tóm tắt
22
Số lần xem bài báo
15