Multi-frequency sea level variations at the Quy Nhon port area in the period from 1987-2023
Email:
pmtrang@utc.edu.vn
Tóm tắt
The Quy Nhon port in Vietnam is a key hub for trade and economic development in Binh Dinh province but is significantly impacted by sea-level (SL) variability, which can affect shipping and port operations. This study analyzes sea level variations at Quy Nhon port from 1987 to 2023 using monthly tide gauge data. The Empirical Mode Decomposition method applied to this dataset, identifies four dominant modes: an annual cycle (53.7% of variance, 23.7 cm amplitude) primarily driven by monsoon wind reversals, a semi-annual cycle (27.1%, 13.2 cm amplitude), and interannual (2.3 years, 7 cm amplitude) and decadal (10.7 years, 4 cm amplitude) variations. These latter modes are significantly anti-correlated with the El Niño-Southern Oscillation (ENSO, r = -0.34) and Pacific Decadal Oscillation (PDO, r = -0.45), indicating that warm (cold) phases of these climate modes correspond to lower (upper) SL. A long-term linear SL rise of 1.5–2.1 mm/yr was also observed. These findings provide key insights for SL forecasting and maritime safety, emphasizing the need to refine predictions and better understand underlying physical processesTài liệu tham khảo
[1]. T. H. Chang, H. Y. Wang, Analysis and Exploration of the Impact of Average Sea Level Change on Navigational Safety in Ports, Water, 15 (2023) 2570. https://doi.org/10.3390/w15142570
[2]. V. Gracia, Assessing the impact of sea level rise on port operability using LiDAR-derived digital elevation models, Remote Sens. Environ, 232 (2019) 111318.
[3]. T. M. El-Geziry, Y. M. El-Wakeel, A decadal sea-level variability in Port-Said Harbour (Egypt), Egypt J. Aquat. Res, 1 (2023) 33–39. https://doi.org/10.1016/j.ejar.2022.08.001
[4]. A. Chaigneau, From seasonal flood pulse to seiche: Multi-frequency water-level fluctuations in a large shallow tropical lagoon (Nokoué Lagoon, Benin), Estuar. Coast Shelf Sci., 267 (2022) 107767.
[5]. J. Valle-Rodríguez, A. Trasviña-Castro, Sea level anomaly measurements from satellite coastal altimetry and tide gauges at the entrance of the Gulf of California, Adv. in Space Res, 7 (2020) 1593-1608. https://doi.org/10.1016/j.asr.2020.06.031
[6]. S. Saramul, T. Ezer, Spatial variations of sea level along the coast of Thailand: Impacts of extreme land subsidence, earthquakes and the seasonal monsoon, Glob Planet Change, 122 (2014) 70-81.
[7]. L. Qinyu, J. Yinglai, W. Xiaohua, Y. Haijun, On the Annual Cycle Characteristics of the Sea Surface Height in South China Sea, Adv. in Atmospheric Sci, 18 (2001) 613-622.
[8]. J. Zhou, P. Li, H. Yu, Characteristics and mechanisms of sea surface height in the South China Sea, Glob Planet Change, 88 (2012) 20–31. https://doi.org/10.1016/j.gloplacha.2012.03.001
[9]. T. Wahl, F. M. Calafat, M. E. Luther, Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century, Geophys Res Lett, 2 (2014) 491–498.
[10]. A. M. Amiruddin, The seasonal cycle and variability of sea level in the South China Sea, J. Geophys. Res. Oceans, 8 (2015) 5490-5513.
[11]. M. N. Tsimplis, P. L. Woodworth, The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data, J. Geophys. Res, C8 (1994) 16031-16039.
[12]. M. Marcos, M. N. Tsimplis, Variations of the seasonal sea level cycle in southern Europe, J. Geophys. Res. Oceans, C12 (2007) C12011. https://doi.org/10.1029/2006JC004049
[13]. X. Cheng, Y. Qi, On steric and mass-induced contributions to the annual sea-level variations in the South China Sea, Glob. Planet Change, 3 (2010) 227-233.
[14]. J. Zandagba, M. Moussa, E. Obada, A. Afouda, Hydrodynamic modeling of Nokoué Lake in Benin, Hydrology, 3 (2016) 3040044. https://doi.org/10.3390/hydrology3040044
[15]. S. Dangendorf, Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: The long record of Cuxhaven, Ocean Dyn, 63 (2013) 209–224.
[16]. G. Chen, Z. Wang, C. Qian, C. Lv, Y. Han, Seasonal-to-decadal modes of global sea level variability derived from merged altimeter data, Remote Sens. Environ, 11 (2010) 2524-2535.
[17]. G. Han, Low-frequency sea-level variability in the South China Sea and its relationship to ENSO, Theor. Appl. Climatol, 97 (2009) 403. https://doi.org/10.1007/s00704-009-0116-y
[18]. L. Wang, Q. Li, X. Z. Mao, H. Bi, P. Yin, Interannual sea level variability in the Pearl River Estuary and its response to El Niño–Southern Oscillation, Glob. Planet Change, 162 (2018) 163–174.
[19]. L. S. Genes, R. D. Montoya, A. F. Osorio, Costal Sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea, Cont. Shelf Res, 228 (2021) 104489.
[20]. TCVN 11820-2017, Marine Port Facilities-Design Requirements, Minstry of Transport
[21]. Marine notice on water depth specifications in front of Quy Nhon port, Ministry of Transport, 2018. [Online]. Available: www.vms-south.vn.
[22]. S. V. Vinogradov, R. M. Ponte, Annual cycle in coastal sea level from tide gauges and altimetry, J. Geophys. Res. Oceans, C4 (2010) C04021. https://doi.org/10.1029/2009JC005767
[23]. B. Hünicke, E. Zorita, Trends in the amplitude of Baltic Sea level annual cycle, Tellus A: Dynamic Meteo. and Ocean, 1 (2008) 154–164. https://doi.org/10.1111/j.1600-0870.2007.00277.x
[24]. R. R. Torres, M. N. Tsimplis, Seasonal Sea level cycle in the Caribbean Sea, J. Geophys. Res. Oceans, C7 (2012) C07011. https://doi.org/10.1029/2012JC008159
[25]. J. H. Moon, Y. T. Song, H. K. Lee, PDO and ENSO modulations intensified decadal sea level variability in the tropical Pacific, J. Geophys. Res. Oceans, 12 (2015) 8229–8237.
[26]. L. S. Genes, R. D. Montoya, A. F. Osorio, Costal Sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea, Cont. Shelf Res, 228 (2021) 104489.
[27]. S. Muis, Influence of El Niño-Southern Oscillation on Global Coastal Flooding, Earths Future, 9 (2018) 1311–1322.
[28]. B. Liu, G. Wu, R. Ren, Influences of ENSO on the vertical coupling of atmospheric circulation during the onset of South Asian summer monsoon, Clim. Dyn., 45 (2015) 1859–1875.
[29]. M. Herrmann, T. T. Duy, Mechanisms and intraseasonal variability of the South Vietnam Upwelling, South China Sea: role of circulation, tides and rivers, 4 (2024) 1013–1033.
[30]. P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, IPCC, 2021
[31]. MONRE, Climate change and sea level rise scenarios for Viet Nam, Hanoi, 2016.
[32]. T. T. Van, T. H. Thai, Climate change impacts and adaptation measures for Quy Nhon city, Ear. and Environ. Sci, 2 (2011) 119-127.
[33]. National Climate Assessment Report, Ministry of Natural Resource and Environment, 2021.
[34]. D. T. Pham, Sea-level trends and variability along the coast of Vietnam over 2002–2018: Insights from the X-TRACK/ALES altimetry dataset and coastal tide gauges, Adv. in Space Res, 3 (2024) 1630–1645. https://doi.org/10.1016/j.asr.2023.10.041
[35]. N. M. Hai, S. Ouillon, V. D. Vinh, Sea-level rise in Hai Phong coastal area (Vietnam) and its response to ENSO-evidence from tide gauge measurement of 1960-2020, Vietnam J. of Earth Sci., 44 (2022) 109–126. https://doi.org/10.15625/2615-9783/16961
[36]. H. M. Nguyen, S. Ouillon, V. D. Vu, Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020), Water, 14 (2022) 1709. https://doi.org/10.3390/w14111709
[37]. X. Cheng, Regime Shift of the Sea Level Trend in the South China Sea Modulated by the Tropical Pacific Decadal Variability, Geophys. Res. Lett, 7 (2023) e2022GL102708.
[38]. W. Qin, Y. Cai, L. He, The Relationship between the Typhoons Affecting South China and the Pacific Decadal Oscillation, Atmosphere, 3 (2024) 285. https://doi.org/10.3390/atmos15030285
[39]. N. Q. Binh, V. H. Cong, V. N. Duong, Assessment of sediment transportation to Thi Nai lagoon, Binh Dinh province, J. of Sci. and Tech. of Water Res. and Environ, 65 (2019) 58–66.
[40]. L.X. Sinh, Assessment of pollution load into Thi Nai lagoon, Viet Nam and prediction to Assessment of Pollution Load into Thi Nai Lagoon, Art. in International J. of Sci, 4, (2015) 117-127.
[41]. People's Committee of Binh Dinh Province, Binh Dinh Gazetteer, Nature, Population and Administration. General Publisher, Quy Nhon, 2005.
[42]. T. T. D. Tran, T. T. Tran, Application of PlanetScope-based Depth Invariant Index method in Seagrass Mapping: The study in Thi Nai Lagoon, Binh Dinh Province, Sci. and Tech. Development J, 24 (2021) 2110-2122. https://doi.org/10.32508/stdj.v24i3.2737
[43]. N. E. Huang, Applications of Hilbert–Huang transform to non-stationary financial time series analysis Appl. Stochastic Models Bus and Indus, 19 (2003) 245-268.
[44]. Z. Wu, N. E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, (2004) 1597–1611.
[45]. C. Franzke, Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trend analysis, Nonlinear Process Geophys, 1 (2009) 65–76. https://doi.org/10.5194/npg-16-65-2009
[46]. H. N. Thanh, N.D. Thanh, M. Herrmann, The distinct impacts of the two types of ENSO on rainfall variability over Southeast Asia, Clim. Dyn, 61 (2023) 2155–2172.
[47]. N. B. Trinh, New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4, Geosci. Model Dev, 4 (2024) 1831–1867. https://doi.org /10.5194/gmd-17-1831-2024
[48]. NOAA, 2020. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. Access on December 31, 2020.
[49]. P. K. Sen, Estimates of the Regression Coefficient Based on Kendall’s Tau, J. Am. Stat. Assoc, 63 (1968) 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
[50]. H. Theil, A rank-invariant method of linear and polynomial regression analysis, in: B. Raj, J. Koerts (Eds.) Henri Theil’s Contri. to Economi and Economet, Advanced Studies in Theoretical and Applied Econometrics Age, Springer, Dordrecht, 1992. https://doi.org/10.1007/978-94-011-2546-8_20 1992
[51]. H. B. Mann, Nonparametric tests against trend, Econometrica Soci, 13 (1945) 245-259.
[52]. H. Abdi, The Kendall Rank Correlation Coefficient, The Concise Encyclopedia of Statistics (1995) 278-281.
[53]. T. T. Duy, The role of wind, mesoscale dynamics, and coastal circulation in the interannual variability of the South Vietnam Upwelling, South China Sea - answers from a high-resolution ocean model, Ocean Science, 4 (2022) 1131–1161. https://doi.org/10.5194/os-18-1131-2022
[54]. Z. Rong, Y. Liu, H. Zong, Y. Cheng, Interannual sea level variability in the South China Sea and its response to ENSO, Glob. Planet Change, 4 (2007) 257–272.
[55]. R. Huang, W. Chen, B. Yang, R. Zhang, Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle, Adv. Atmos. Sci, 21 (2004) 407–424.
[56]. R. H. Weisberg, C. Wang, A western Pacific oscillator paradigm for the El Niño-Southern Oscillation, Geophys. Res. Lett, 7 (1997) 779–782. https://doi.org/10.1029/97GL00689
[57]. C. Wang, R. H. Weisberg, J. I. Virmani, Western Pacific interannual variability associated with the El Niño-Southern Oscillation, J. Geophys. Res. Oceans, C3 (1999) 5131–5149.
[58]. T. V. Vu, Effects of ENSO on autumn rainfall in central Vietnam, Adv. in Meteo, 1, 264373, 2015.
[59]. G. A. Meehl, The South Asian Monsoon and the Tropospheric Biennial Oscillation, J. of Clim, 8 (1997) 1921-1943.
[60]. P. L. Woodworth, Forcing Factors Affecting Sea Level Changes at the Coast, Surv. in Geophys, 40 (2019) 1351–1397.
[61]. J. A. M. Andrew, H. Leach, P. L. Woodworth, The relationships between tropical Atlantic sea level variability and major climate indices, Ocean Dyn, 56 (2006) 452–463.
[62]. A. Hibbert, Quasi-biennial modulation of the Southern Ocean coherent mode, Quarterly J. of the Royal Meteo.l Soci, 648 (2010) 755–768.
[63]. A. Cazenave, B. Meyssignac, M. Ablain, Global sea-level budget 1993-present, Earth Syst. Sci. Data, 3 (2018) 1551–1590.
[2]. V. Gracia, Assessing the impact of sea level rise on port operability using LiDAR-derived digital elevation models, Remote Sens. Environ, 232 (2019) 111318.
[3]. T. M. El-Geziry, Y. M. El-Wakeel, A decadal sea-level variability in Port-Said Harbour (Egypt), Egypt J. Aquat. Res, 1 (2023) 33–39. https://doi.org/10.1016/j.ejar.2022.08.001
[4]. A. Chaigneau, From seasonal flood pulse to seiche: Multi-frequency water-level fluctuations in a large shallow tropical lagoon (Nokoué Lagoon, Benin), Estuar. Coast Shelf Sci., 267 (2022) 107767.
[5]. J. Valle-Rodríguez, A. Trasviña-Castro, Sea level anomaly measurements from satellite coastal altimetry and tide gauges at the entrance of the Gulf of California, Adv. in Space Res, 7 (2020) 1593-1608. https://doi.org/10.1016/j.asr.2020.06.031
[6]. S. Saramul, T. Ezer, Spatial variations of sea level along the coast of Thailand: Impacts of extreme land subsidence, earthquakes and the seasonal monsoon, Glob Planet Change, 122 (2014) 70-81.
[7]. L. Qinyu, J. Yinglai, W. Xiaohua, Y. Haijun, On the Annual Cycle Characteristics of the Sea Surface Height in South China Sea, Adv. in Atmospheric Sci, 18 (2001) 613-622.
[8]. J. Zhou, P. Li, H. Yu, Characteristics and mechanisms of sea surface height in the South China Sea, Glob Planet Change, 88 (2012) 20–31. https://doi.org/10.1016/j.gloplacha.2012.03.001
[9]. T. Wahl, F. M. Calafat, M. E. Luther, Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century, Geophys Res Lett, 2 (2014) 491–498.
[10]. A. M. Amiruddin, The seasonal cycle and variability of sea level in the South China Sea, J. Geophys. Res. Oceans, 8 (2015) 5490-5513.
[11]. M. N. Tsimplis, P. L. Woodworth, The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data, J. Geophys. Res, C8 (1994) 16031-16039.
[12]. M. Marcos, M. N. Tsimplis, Variations of the seasonal sea level cycle in southern Europe, J. Geophys. Res. Oceans, C12 (2007) C12011. https://doi.org/10.1029/2006JC004049
[13]. X. Cheng, Y. Qi, On steric and mass-induced contributions to the annual sea-level variations in the South China Sea, Glob. Planet Change, 3 (2010) 227-233.
[14]. J. Zandagba, M. Moussa, E. Obada, A. Afouda, Hydrodynamic modeling of Nokoué Lake in Benin, Hydrology, 3 (2016) 3040044. https://doi.org/10.3390/hydrology3040044
[15]. S. Dangendorf, Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: The long record of Cuxhaven, Ocean Dyn, 63 (2013) 209–224.
[16]. G. Chen, Z. Wang, C. Qian, C. Lv, Y. Han, Seasonal-to-decadal modes of global sea level variability derived from merged altimeter data, Remote Sens. Environ, 11 (2010) 2524-2535.
[17]. G. Han, Low-frequency sea-level variability in the South China Sea and its relationship to ENSO, Theor. Appl. Climatol, 97 (2009) 403. https://doi.org/10.1007/s00704-009-0116-y
[18]. L. Wang, Q. Li, X. Z. Mao, H. Bi, P. Yin, Interannual sea level variability in the Pearl River Estuary and its response to El Niño–Southern Oscillation, Glob. Planet Change, 162 (2018) 163–174.
[19]. L. S. Genes, R. D. Montoya, A. F. Osorio, Costal Sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea, Cont. Shelf Res, 228 (2021) 104489.
[20]. TCVN 11820-2017, Marine Port Facilities-Design Requirements, Minstry of Transport
[21]. Marine notice on water depth specifications in front of Quy Nhon port, Ministry of Transport, 2018. [Online]. Available: www.vms-south.vn.
[22]. S. V. Vinogradov, R. M. Ponte, Annual cycle in coastal sea level from tide gauges and altimetry, J. Geophys. Res. Oceans, C4 (2010) C04021. https://doi.org/10.1029/2009JC005767
[23]. B. Hünicke, E. Zorita, Trends in the amplitude of Baltic Sea level annual cycle, Tellus A: Dynamic Meteo. and Ocean, 1 (2008) 154–164. https://doi.org/10.1111/j.1600-0870.2007.00277.x
[24]. R. R. Torres, M. N. Tsimplis, Seasonal Sea level cycle in the Caribbean Sea, J. Geophys. Res. Oceans, C7 (2012) C07011. https://doi.org/10.1029/2012JC008159
[25]. J. H. Moon, Y. T. Song, H. K. Lee, PDO and ENSO modulations intensified decadal sea level variability in the tropical Pacific, J. Geophys. Res. Oceans, 12 (2015) 8229–8237.
[26]. L. S. Genes, R. D. Montoya, A. F. Osorio, Costal Sea level variability and extreme events in Moñitos, Cordoba, Colombian Caribbean Sea, Cont. Shelf Res, 228 (2021) 104489.
[27]. S. Muis, Influence of El Niño-Southern Oscillation on Global Coastal Flooding, Earths Future, 9 (2018) 1311–1322.
[28]. B. Liu, G. Wu, R. Ren, Influences of ENSO on the vertical coupling of atmospheric circulation during the onset of South Asian summer monsoon, Clim. Dyn., 45 (2015) 1859–1875.
[29]. M. Herrmann, T. T. Duy, Mechanisms and intraseasonal variability of the South Vietnam Upwelling, South China Sea: role of circulation, tides and rivers, 4 (2024) 1013–1033.
[30]. P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, IPCC, 2021
[31]. MONRE, Climate change and sea level rise scenarios for Viet Nam, Hanoi, 2016.
[32]. T. T. Van, T. H. Thai, Climate change impacts and adaptation measures for Quy Nhon city, Ear. and Environ. Sci, 2 (2011) 119-127.
[33]. National Climate Assessment Report, Ministry of Natural Resource and Environment, 2021.
[34]. D. T. Pham, Sea-level trends and variability along the coast of Vietnam over 2002–2018: Insights from the X-TRACK/ALES altimetry dataset and coastal tide gauges, Adv. in Space Res, 3 (2024) 1630–1645. https://doi.org/10.1016/j.asr.2023.10.041
[35]. N. M. Hai, S. Ouillon, V. D. Vinh, Sea-level rise in Hai Phong coastal area (Vietnam) and its response to ENSO-evidence from tide gauge measurement of 1960-2020, Vietnam J. of Earth Sci., 44 (2022) 109–126. https://doi.org/10.15625/2615-9783/16961
[36]. H. M. Nguyen, S. Ouillon, V. D. Vu, Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020), Water, 14 (2022) 1709. https://doi.org/10.3390/w14111709
[37]. X. Cheng, Regime Shift of the Sea Level Trend in the South China Sea Modulated by the Tropical Pacific Decadal Variability, Geophys. Res. Lett, 7 (2023) e2022GL102708.
[38]. W. Qin, Y. Cai, L. He, The Relationship between the Typhoons Affecting South China and the Pacific Decadal Oscillation, Atmosphere, 3 (2024) 285. https://doi.org/10.3390/atmos15030285
[39]. N. Q. Binh, V. H. Cong, V. N. Duong, Assessment of sediment transportation to Thi Nai lagoon, Binh Dinh province, J. of Sci. and Tech. of Water Res. and Environ, 65 (2019) 58–66.
[40]. L.X. Sinh, Assessment of pollution load into Thi Nai lagoon, Viet Nam and prediction to Assessment of Pollution Load into Thi Nai Lagoon, Art. in International J. of Sci, 4, (2015) 117-127.
[41]. People's Committee of Binh Dinh Province, Binh Dinh Gazetteer, Nature, Population and Administration. General Publisher, Quy Nhon, 2005.
[42]. T. T. D. Tran, T. T. Tran, Application of PlanetScope-based Depth Invariant Index method in Seagrass Mapping: The study in Thi Nai Lagoon, Binh Dinh Province, Sci. and Tech. Development J, 24 (2021) 2110-2122. https://doi.org/10.32508/stdj.v24i3.2737
[43]. N. E. Huang, Applications of Hilbert–Huang transform to non-stationary financial time series analysis Appl. Stochastic Models Bus and Indus, 19 (2003) 245-268.
[44]. Z. Wu, N. E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, (2004) 1597–1611.
[45]. C. Franzke, Multi-scale analysis of teleconnection indices: Climate noise and nonlinear trend analysis, Nonlinear Process Geophys, 1 (2009) 65–76. https://doi.org/10.5194/npg-16-65-2009
[46]. H. N. Thanh, N.D. Thanh, M. Herrmann, The distinct impacts of the two types of ENSO on rainfall variability over Southeast Asia, Clim. Dyn, 61 (2023) 2155–2172.
[47]. N. B. Trinh, New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4, Geosci. Model Dev, 4 (2024) 1831–1867. https://doi.org /10.5194/gmd-17-1831-2024
[48]. NOAA, 2020. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. Access on December 31, 2020.
[49]. P. K. Sen, Estimates of the Regression Coefficient Based on Kendall’s Tau, J. Am. Stat. Assoc, 63 (1968) 1379–1389. https://doi.org/10.1080/01621459.1968.10480934
[50]. H. Theil, A rank-invariant method of linear and polynomial regression analysis, in: B. Raj, J. Koerts (Eds.) Henri Theil’s Contri. to Economi and Economet, Advanced Studies in Theoretical and Applied Econometrics Age, Springer, Dordrecht, 1992. https://doi.org/10.1007/978-94-011-2546-8_20 1992
[51]. H. B. Mann, Nonparametric tests against trend, Econometrica Soci, 13 (1945) 245-259.
[52]. H. Abdi, The Kendall Rank Correlation Coefficient, The Concise Encyclopedia of Statistics (1995) 278-281.
[53]. T. T. Duy, The role of wind, mesoscale dynamics, and coastal circulation in the interannual variability of the South Vietnam Upwelling, South China Sea - answers from a high-resolution ocean model, Ocean Science, 4 (2022) 1131–1161. https://doi.org/10.5194/os-18-1131-2022
[54]. Z. Rong, Y. Liu, H. Zong, Y. Cheng, Interannual sea level variability in the South China Sea and its response to ENSO, Glob. Planet Change, 4 (2007) 257–272.
[55]. R. Huang, W. Chen, B. Yang, R. Zhang, Recent advances in studies of the interaction between the East Asian winter and summer monsoons and ENSO cycle, Adv. Atmos. Sci, 21 (2004) 407–424.
[56]. R. H. Weisberg, C. Wang, A western Pacific oscillator paradigm for the El Niño-Southern Oscillation, Geophys. Res. Lett, 7 (1997) 779–782. https://doi.org/10.1029/97GL00689
[57]. C. Wang, R. H. Weisberg, J. I. Virmani, Western Pacific interannual variability associated with the El Niño-Southern Oscillation, J. Geophys. Res. Oceans, C3 (1999) 5131–5149.
[58]. T. V. Vu, Effects of ENSO on autumn rainfall in central Vietnam, Adv. in Meteo, 1, 264373, 2015.
[59]. G. A. Meehl, The South Asian Monsoon and the Tropospheric Biennial Oscillation, J. of Clim, 8 (1997) 1921-1943.
[60]. P. L. Woodworth, Forcing Factors Affecting Sea Level Changes at the Coast, Surv. in Geophys, 40 (2019) 1351–1397.
[61]. J. A. M. Andrew, H. Leach, P. L. Woodworth, The relationships between tropical Atlantic sea level variability and major climate indices, Ocean Dyn, 56 (2006) 452–463.
[62]. A. Hibbert, Quasi-biennial modulation of the Southern Ocean coherent mode, Quarterly J. of the Royal Meteo.l Soci, 648 (2010) 755–768.
[63]. A. Cazenave, B. Meyssignac, M. Ablain, Global sea-level budget 1993-present, Earth Syst. Sci. Data, 3 (2018) 1551–1590.
Tải xuống
Chưa có dữ liệu thống kê

Nhận bài
21/03/2025
Nhận bài sửa
06/05/2025
Chấp nhận đăng
09/05/2025
Xuất bản
15/05/2025
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Pham Minh, T., Vu Duy, V., & Alexis, C. (1747242000). Multi-frequency sea level variations at the Quy Nhon port area in the period from 1987-2023. Tạp Chí Khoa Học Giao Thông Vận Tải, 76(4), 610-624. https://doi.org/10.47869/tcsj.76.4.13
Số lần xem tóm tắt
71
Số lần xem bài báo
23