Mechanical characterization of amorphous silica material and nanoparticle formation via computational approach
Email:
thinh.letien@phenikaa-uni.edu.vn
Tóm tắt
Amorphous silica is widely used in advanced materials and nanocomposites due to its unique mechanical and structural properties. Understanding its mechanical behavior and the characteristics of silica nanoparticles is essential for optimizing their performance in various applications. This study numerically investigates the mechanical properties of amorphous silica material and the formation of silica nanoparticles using Molecular Dynamics (MD) simulations. Amorphous silica is generated from a crystalline structure through a melt-and-quench procedure. To determine its mechanical properties, six virtual mechanical tests are performed to compute the apparent elasticity tensor, from which the elastic moduli are extracted via an isotropic projection. The results indicate that amorphous silica exhibits nearly isotropic mechanical behavior, with high stiffness characterized by a bulk modulus of 36.84 GPa, a shear modulus of 30.49 GPa, a Young’s modulus of 71.69 GPa, and a Poisson’s ratio of 0.18. Additionally, the study explores the formation of silica nanoparticles with radii of 1.5 nm, 3.0 nm, and 4.8 nm. The analysis reveals that surface roughness increases as nanoparticle size decreases, which may have implications for interfacial interactions in composite materials. These findings contribute to the understanding of amorphous silica’s mechanical behavior and its potential application as a reinforcing nanomaterial in polymer compositesTài liệu tham khảo
[1]. H. K. Issa, A. Taherizadeh, A. Maleki, A. Ghaei, Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes, Ceramics International, 43 (2017) 14582–14592. https://doi.org/10.1016/j.ceramint.2017.06.057
[2]. K. Nadeem, F. Zeb, M. Azeem Abid, M. Mumtaz, M. Anis ur Rehman, Effect of amorphous silica matrix on structural, magnetic, and dielectric properties of cobalt ferrite/silica nanocomposites, Journal of Non-Crystalline Solids, 400 (2014) 45–50. https://doi.org/10.1016/j.jnoncrysol.2014.05.004
[3]. J. L. Gurav, I. K. Jung, H. H. Park, E. S. Kang, D. Y. Nadargi, Silica Aerogel: Synthesis and Applications, Journal of Nanomaterials, 2010 (2010) e409310. https://doi.org/10.1155/2010/409310
[4]. N. H. Khdary, M.E. Abdelsalam, Polymer-silica nanocomposite membranes for CO2 capturing, Arabian Journal of Chemistry, 13 (2020) 557–567. https://doi.org/10.1016/j.arabjc.2017.06.001
[5]. H. K. Issa, A. Taherizadeh, A. Maleki, Atomistic-level study of the mechanical behavior of amorphous and crystalline silica nanoparticles, Ceramics International, (2020). https://doi.org/10.1016/j.ceramint.2020.05.272
[6]. H. L. Quang, Q. C. He, Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces, Mechanics of Materials, 40 (2008) 865–884. https://doi.org/10.1016/j.mechmat.2008.04.003
[7]. J. Berriot, F. Lequeux, L. Monnerie, H. Montes, D. Long, P. Sotta, Filler–elastomer interaction in model filled rubbers, a 1H NMR study, Journal of Non-Crystalline Solids, 307–310 (2002) 719–724. https://doi.org/10.1016/S0022-3093(02)01552-1
[8]. A. Papon, K. Saalwächter, K. Schäler, L. Guy, F. Lequeux, H. Montes, Low-Field NMR Investigations of Nanocomposites: Polymer Dynamics and Network Effects, Macromolecules, 44 (2011) 913–922. https://doi.org/10.1021/ma102486x
[9]. Y. Jing, Q. Meng, Molecular dynamics simulations of the mechanical properties of crystalline/amorphous silicon core/shell nanowires, Physica B: Condensed Matter, 405 (2010) 2413–2417. https://doi.org/10.1016/j.physb.2010.02.056
[10]. T. Vo, B. Reeder, A. Damone, P. Newell, Effect of Domain Size, Boundary, and Loading Conditions on Mechanical Properties of Amorphous Silica: A Reactive Molecular Dynamics Study, Nanomaterials, 10 (2020) 54. https://doi.org/10.3390/nano10010054
[11]. F. Yuan, L. Huang, Molecular dynamics simulation of amorphous silica under uniaxial tension: From bulk to nanowire, Journal of Non-Crystalline Solids, 358 (2012) 3481–3487. https://doi.org/10.1016/j.jnoncrysol.2012.05.045
[12]. F. Yuan, L. Huang, Size-dependent elasticity of amorphous silica nanowire: A molecular dynamics study, Appl. Phys. Lett., 103 (2013) 201905. https://doi.org/10.1063/1.4830038
[13]. H. K. Issa, A. Taherizadeh, A. Maleki, Atomistic-level study of the mechanical behavior of amorphous and crystalline silica nanoparticles, Ceramics International, 46 (2020) 21647–21656. https://doi.org/10.1016/j.ceramint.2020.05.272
[14]. O. Oguz, N. Candau, S. H. F. Bernhard, C. K. Soz, O. Heinz, G. Stochlet, C. J. G. Plummer, E. Yilgor, I. Yilgor, Y.Z. Menceloglu, Effect of surface modification of colloidal silica nanoparticles on the rigid amorphous fraction and mechanical properties of amorphous polyurethane–urea–silica nanocomposites, Journal of Polymer Science Part A: Polymer Chemistry, 57 (2019) 2543–2556. https://doi.org/10.1002/pola.29529
[15]. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, 1989.
[16]. K. Binder, Monte Carlo and Molecular Dynamics Simulations Polymer, Oxford University Press, Inc., USA, 1995.
[17]. W. K. Liu, E. G. Karpov, H. S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications, 1 edition, Wiley, Chichester, England; Hoboken, NJ, 2006.
[18]. D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2 edition, Cambridge University Press, Cambridge, UK 2004.
[19]. A. Satoh, Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics, 1 edition, Elsevier, Amsterdam 2010.
[20]. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2 edition, Academic Press, San Diego, 2001.
[21]. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, 117 (1995) 1–19. https://doi.org/10.1006/jcph.1995.1039
[22]. S. Tsuneyuki, Molecular dynamics simulation of silica with a first-principles interatomic potential, Mol Eng, 6 (1996) 157–182. https://doi.org/10.1007/BF00161726
[23]. B. W. H. van Beest, G. J. Kramer, R. A. van Santen, Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett., 64 (1990) 1955–1958. https://doi.org/10.1103/PhysRevLett.64.1955
[24]. A. Carré, L. Berthier, J. Horbach, S. Ispas, W. Kob, Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study, J. Chem. Phys., 127 (2007) 114512. https://doi.org/10.1063/1.2777136
[25]. W. Gonçalves, J. Morthomas, P. Chantrenne, M. Perez, G. Foray, C.L. Martin, Molecular dynamics simulations of amorphous silica surface properties with truncated Coulomb interactions, Journal of Non-Crystalline Solids, 447 (2016) 1–8. https://doi.org/10.1016/j.jnoncrysol.2016.05.024
[26]. H. Scholze, Glass: nature, structure, and properties, Springer-Verlag, 1991
[27]. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984) 511–519. https://doi.org/10.1063/1.447334
[28]. K. Vollmayr, W. Kob, K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study, Phys. Rev. B, 54 (1996) 15808–15827. https://doi.org/10.1103/PhysRevB.54.15808
[29]. C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics, 23 (2008) 307–323. https://doi.org/10.1016/j.probengmech.2007.12.019
[30]. J. Guilleminot, C. Soize, Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model, International Journal for Numerical Methods in Engineering, 90 (2012) 613–635. https://doi.org/10.1002/nme.3338
[31]. S. C. Cowin, M. M. Mehrabadi, The structure of the linear anisotropic elastic symmetries, Journal of the Mechanics and Physics of Solids, 40 (1992) 1459–1471. https://doi.org/10.1016/0022-5096(92)90029-2
[32]. D. Brown, V. Marcadon, P. Mélé, N. D. Albérola, Effect of Filler Particle Size on the Properties of Model Nanocomposites, Macromolecules, 41 (2008) 1499–1511. https://doi.org/10.1021/ma701940j
[33]. V. Marcadon, Effets de taille et d’interphase sur le comportement mécanique de nanocomposites particulaires., phdthesis, Ecole Polytechnique X, 2005. https://pastel.archives-ouvertes.fr/pastel-00001804 (accessed June 5, 2020).
[34]. L. B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press, 2004.
[35]. T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, B. Champagnon, Elastic Moduli of Permanently Densified Silica Glasses, Scientific Reports, 4 (2014) 7193. https://doi.org/10.1038/srep07193
[36]. T. Hao, Z. M. Hossain, Atomistic mechanisms of crack nucleation and propagation in amorphous silica, Phys. Rev. B, 100 (2019) 014204. https://doi.org/10.1103/PhysRevB.100.014204
[37]. S. C. Chowdhury, E. A. Wise, R. Ganesh, J. W. Gillespie, Effects of surface crack on the mechanical properties of Silica: A molecular dynamics simulation study, Engineering Fracture Mechanics, 207 (2019) 99–108. https://doi.org/10.1016/j.engfracmech.2018.12.025
[38]. H. Mei, Y. Yang, A. C. T. van Duin, S. B. Sinnott, J. C. Mauro, L. Liu, Z. Fu, Effects of water on the mechanical properties of silica glass using molecular dynamics, Acta Materialia, 178 (2019) 36–44. https://doi.org/10.1016/j.actamat.2019.07.049
[39]. Y. Takato, M. E. Benson, S. Sen, Small nanoparticles, surface geometry and contact forces, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474 (2018) 20170723. https://doi.org/10.1098/rspa.2017.0723
[40]. D. Surblys, Y. Kawagoe, M. Shibahara, T. Ohara, Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid-liquid interfaces, J. Chem. Phys., 150 (2019) 114705. https://doi.org/10.1063/1.5081103
[41]. V. Marcadon, D. Brown, E. Hervé, P. Mélé, N. D. Albérola, A. Zaoui, Confrontation between Molecular Dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites, Computational Materials Science, 79 (2013) 495–505. https://doi.org/10.1016/j.commatsci.2013.07.002
[42]. S. Yu, S. Yang, M. Cho, Multi-scale modeling of cross-linked epoxy nanocomposites, Polymer, 50 (2009) 945–952. https://doi.org/10.1016/j.polymer.2008.11.054
[43]. J. Choi, H. Shin, S. Yang, M. Cho, The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach, Composite Structures, 119 (2015) 365–376. https://doi.org/10.1016/j.compstruct.2014.09.014
[2]. K. Nadeem, F. Zeb, M. Azeem Abid, M. Mumtaz, M. Anis ur Rehman, Effect of amorphous silica matrix on structural, magnetic, and dielectric properties of cobalt ferrite/silica nanocomposites, Journal of Non-Crystalline Solids, 400 (2014) 45–50. https://doi.org/10.1016/j.jnoncrysol.2014.05.004
[3]. J. L. Gurav, I. K. Jung, H. H. Park, E. S. Kang, D. Y. Nadargi, Silica Aerogel: Synthesis and Applications, Journal of Nanomaterials, 2010 (2010) e409310. https://doi.org/10.1155/2010/409310
[4]. N. H. Khdary, M.E. Abdelsalam, Polymer-silica nanocomposite membranes for CO2 capturing, Arabian Journal of Chemistry, 13 (2020) 557–567. https://doi.org/10.1016/j.arabjc.2017.06.001
[5]. H. K. Issa, A. Taherizadeh, A. Maleki, Atomistic-level study of the mechanical behavior of amorphous and crystalline silica nanoparticles, Ceramics International, (2020). https://doi.org/10.1016/j.ceramint.2020.05.272
[6]. H. L. Quang, Q. C. He, Variational principles and bounds for elastic inhomogeneous materials with coherent imperfect interfaces, Mechanics of Materials, 40 (2008) 865–884. https://doi.org/10.1016/j.mechmat.2008.04.003
[7]. J. Berriot, F. Lequeux, L. Monnerie, H. Montes, D. Long, P. Sotta, Filler–elastomer interaction in model filled rubbers, a 1H NMR study, Journal of Non-Crystalline Solids, 307–310 (2002) 719–724. https://doi.org/10.1016/S0022-3093(02)01552-1
[8]. A. Papon, K. Saalwächter, K. Schäler, L. Guy, F. Lequeux, H. Montes, Low-Field NMR Investigations of Nanocomposites: Polymer Dynamics and Network Effects, Macromolecules, 44 (2011) 913–922. https://doi.org/10.1021/ma102486x
[9]. Y. Jing, Q. Meng, Molecular dynamics simulations of the mechanical properties of crystalline/amorphous silicon core/shell nanowires, Physica B: Condensed Matter, 405 (2010) 2413–2417. https://doi.org/10.1016/j.physb.2010.02.056
[10]. T. Vo, B. Reeder, A. Damone, P. Newell, Effect of Domain Size, Boundary, and Loading Conditions on Mechanical Properties of Amorphous Silica: A Reactive Molecular Dynamics Study, Nanomaterials, 10 (2020) 54. https://doi.org/10.3390/nano10010054
[11]. F. Yuan, L. Huang, Molecular dynamics simulation of amorphous silica under uniaxial tension: From bulk to nanowire, Journal of Non-Crystalline Solids, 358 (2012) 3481–3487. https://doi.org/10.1016/j.jnoncrysol.2012.05.045
[12]. F. Yuan, L. Huang, Size-dependent elasticity of amorphous silica nanowire: A molecular dynamics study, Appl. Phys. Lett., 103 (2013) 201905. https://doi.org/10.1063/1.4830038
[13]. H. K. Issa, A. Taherizadeh, A. Maleki, Atomistic-level study of the mechanical behavior of amorphous and crystalline silica nanoparticles, Ceramics International, 46 (2020) 21647–21656. https://doi.org/10.1016/j.ceramint.2020.05.272
[14]. O. Oguz, N. Candau, S. H. F. Bernhard, C. K. Soz, O. Heinz, G. Stochlet, C. J. G. Plummer, E. Yilgor, I. Yilgor, Y.Z. Menceloglu, Effect of surface modification of colloidal silica nanoparticles on the rigid amorphous fraction and mechanical properties of amorphous polyurethane–urea–silica nanocomposites, Journal of Polymer Science Part A: Polymer Chemistry, 57 (2019) 2543–2556. https://doi.org/10.1002/pola.29529
[15]. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, 1989.
[16]. K. Binder, Monte Carlo and Molecular Dynamics Simulations Polymer, Oxford University Press, Inc., USA, 1995.
[17]. W. K. Liu, E. G. Karpov, H. S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications, 1 edition, Wiley, Chichester, England; Hoboken, NJ, 2006.
[18]. D. C. Rapaport, The Art of Molecular Dynamics Simulation, 2 edition, Cambridge University Press, Cambridge, UK 2004.
[19]. A. Satoh, Introduction to Practice of Molecular Simulation: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann and Dissipative Particle Dynamics, 1 edition, Elsevier, Amsterdam 2010.
[20]. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2 edition, Academic Press, San Diego, 2001.
[21]. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, 117 (1995) 1–19. https://doi.org/10.1006/jcph.1995.1039
[22]. S. Tsuneyuki, Molecular dynamics simulation of silica with a first-principles interatomic potential, Mol Eng, 6 (1996) 157–182. https://doi.org/10.1007/BF00161726
[23]. B. W. H. van Beest, G. J. Kramer, R. A. van Santen, Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett., 64 (1990) 1955–1958. https://doi.org/10.1103/PhysRevLett.64.1955
[24]. A. Carré, L. Berthier, J. Horbach, S. Ispas, W. Kob, Amorphous silica modeled with truncated and screened Coulomb interactions: A molecular dynamics simulation study, J. Chem. Phys., 127 (2007) 114512. https://doi.org/10.1063/1.2777136
[25]. W. Gonçalves, J. Morthomas, P. Chantrenne, M. Perez, G. Foray, C.L. Martin, Molecular dynamics simulations of amorphous silica surface properties with truncated Coulomb interactions, Journal of Non-Crystalline Solids, 447 (2016) 1–8. https://doi.org/10.1016/j.jnoncrysol.2016.05.024
[26]. H. Scholze, Glass: nature, structure, and properties, Springer-Verlag, 1991
[27]. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984) 511–519. https://doi.org/10.1063/1.447334
[28]. K. Vollmayr, W. Kob, K. Binder, Cooling-rate effects in amorphous silica: A computer-simulation study, Phys. Rev. B, 54 (1996) 15808–15827. https://doi.org/10.1103/PhysRevB.54.15808
[29]. C. Soize, Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size, Probabilistic Engineering Mechanics, 23 (2008) 307–323. https://doi.org/10.1016/j.probengmech.2007.12.019
[30]. J. Guilleminot, C. Soize, Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model, International Journal for Numerical Methods in Engineering, 90 (2012) 613–635. https://doi.org/10.1002/nme.3338
[31]. S. C. Cowin, M. M. Mehrabadi, The structure of the linear anisotropic elastic symmetries, Journal of the Mechanics and Physics of Solids, 40 (1992) 1459–1471. https://doi.org/10.1016/0022-5096(92)90029-2
[32]. D. Brown, V. Marcadon, P. Mélé, N. D. Albérola, Effect of Filler Particle Size on the Properties of Model Nanocomposites, Macromolecules, 41 (2008) 1499–1511. https://doi.org/10.1021/ma701940j
[33]. V. Marcadon, Effets de taille et d’interphase sur le comportement mécanique de nanocomposites particulaires., phdthesis, Ecole Polytechnique X, 2005. https://pastel.archives-ouvertes.fr/pastel-00001804 (accessed June 5, 2020).
[34]. L. B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press, 2004.
[35]. T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, B. Champagnon, Elastic Moduli of Permanently Densified Silica Glasses, Scientific Reports, 4 (2014) 7193. https://doi.org/10.1038/srep07193
[36]. T. Hao, Z. M. Hossain, Atomistic mechanisms of crack nucleation and propagation in amorphous silica, Phys. Rev. B, 100 (2019) 014204. https://doi.org/10.1103/PhysRevB.100.014204
[37]. S. C. Chowdhury, E. A. Wise, R. Ganesh, J. W. Gillespie, Effects of surface crack on the mechanical properties of Silica: A molecular dynamics simulation study, Engineering Fracture Mechanics, 207 (2019) 99–108. https://doi.org/10.1016/j.engfracmech.2018.12.025
[38]. H. Mei, Y. Yang, A. C. T. van Duin, S. B. Sinnott, J. C. Mauro, L. Liu, Z. Fu, Effects of water on the mechanical properties of silica glass using molecular dynamics, Acta Materialia, 178 (2019) 36–44. https://doi.org/10.1016/j.actamat.2019.07.049
[39]. Y. Takato, M. E. Benson, S. Sen, Small nanoparticles, surface geometry and contact forces, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474 (2018) 20170723. https://doi.org/10.1098/rspa.2017.0723
[40]. D. Surblys, Y. Kawagoe, M. Shibahara, T. Ohara, Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid-liquid interfaces, J. Chem. Phys., 150 (2019) 114705. https://doi.org/10.1063/1.5081103
[41]. V. Marcadon, D. Brown, E. Hervé, P. Mélé, N. D. Albérola, A. Zaoui, Confrontation between Molecular Dynamics and micromechanical approaches to investigate particle size effects on the mechanical behaviour of polymer nanocomposites, Computational Materials Science, 79 (2013) 495–505. https://doi.org/10.1016/j.commatsci.2013.07.002
[42]. S. Yu, S. Yang, M. Cho, Multi-scale modeling of cross-linked epoxy nanocomposites, Polymer, 50 (2009) 945–952. https://doi.org/10.1016/j.polymer.2008.11.054
[43]. J. Choi, H. Shin, S. Yang, M. Cho, The influence of nanoparticle size on the mechanical properties of polymer nanocomposites and the associated interphase region: A multiscale approach, Composite Structures, 119 (2015) 365–376. https://doi.org/10.1016/j.compstruct.2014.09.014
Tải xuống
Chưa có dữ liệu thống kê

Nhận bài
13/03/2025
Nhận bài sửa
15/04/2025
Chấp nhận đăng
09/05/2025
Xuất bản
15/05/2025
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Le Tien, T., & Duong Thanh, H. (1747242000). Mechanical characterization of amorphous silica material and nanoparticle formation via computational approach. Tạp Chí Khoa Học Giao Thông Vận Tải, 76(4), 583-596. https://doi.org/10.47869/tcsj.76.4.11
Số lần xem tóm tắt
44
Số lần xem bài báo
24