Tính toán tính chất cơ học, điện tử và áp điện của vật liệu SiS đơn lớp bằng lý thuyết phiếm hàm mật độ

  • Trần Thế Quang

    Khoa Công nghệ và Kỹ thuật, Trường Đại học Thái Bình, Thái Bình, Việt Nam
  • Nguyễn Hoàng Linh

    Trung Tâm Vật liệu Bán dẫn, Viện Công nghệ và Kỹ thuật Ceramic Hàn Quốc, Jinju, Hàn Quốc
    Khoa Hội tụ Vật chất và Kỹ thuật Hệ thống, Trường Đại học Quốc Gia Changwon, Changwon, Hàn Quốc
  • Đinh Thế Hưng

    Khoa Cơ khí và Cơ điện tử, Trường Đại học Phenikaa, Hà Nội, Việt Nam
  • Phạm Quốc Việt

    Trường Cơ khí, Đại học Bách Khoa Hà Nội, Hà Nội, Việt Nam
  • Nguyễn Trung Kiên

    Khoa Công nghệ và Kỹ thuật, Trường Đại học Thái Bình, Thái Bình, Việt Nam
  • Đỗ Văn Trường

    Trường Cơ khí, Đại học Bách Khoa Hà Nội, Hà Nội, Việt Nam
Email: tranthequang12@gmail.com
Từ khóa: tính chất cơ học, cấu trúc vùng năng lượng, tính chất áp điện, lý thuyết phiếm hàm mật độ, vật liệu SiS đơn lớp

Tóm tắt

Vật liệu 2D với nhiều tính chất ưu việt đã nhận được sự quan tâm của các nhà khoa học. Trong số đó, cấu trúc SiS đơn lớp là một vật liệu đầy hứa hẹn cho các ứng dụng thực tiễn. Trong nghiên cứu này, chúng tôi đã xác định các tính chất cơ học, điện tử và áp điện của vật liệu SiS đơn lớp bằng lý thuyết phiếm hàm mật độ. Đầu tiên, kết quả phổ dao động phonon, phổ dao động nhiệt và các hằng số đàn hồi được sử dụng để làm sáng tỏ tính ổn định của vật liệu. Bên cạnh đó, thông qua việc áp dụng biến dạng cơ học, chúng tôi đã khám phá được hành vi cơ học cũng như điều chỉnh cấu trúc vùng năng lượng của vật liệu SiS đơn lớp. Cuối cùng, tính chất áp điện của vật liệu được làm sáng tỏ qua mối quan hệ giữa biến dạng và độ lệch phân cực giữa các nguyên tử. Hệ số điện tích áp điện và hệ số ứng suất áp điện thu được đã tiết lộ vật liệu SiS đơn lớp là một ứng cử viên sáng giá trong lĩnh vực áp điện. Những kết quả của chúng tôi là minh chứng cho tiềm năng của cấu trúc SiS và cung cấp thông tin hữu ích cho việc ứng dụng vật liệu này trong các thiết bị điện tử tiên tiến

Tài liệu tham khảo

[1]. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
[2]. M. L. Hu, Zhizhou Yu, J. L. Yin, C. X. Zhang, L. Z. Sun, A DFT-LDA study of electronic and optical properties of hexagonal boron nitride under uniaxial strain, Computational Materials Science, 54 (2012) 165-169. https://doi.org/10.1016/j.commatsci.2011.10.041
[3]. Nguyen Hoang Linh, Nguyen Minh Son, Tran The Quang, Nguyen Van Hoi, Vuong Van Thanh, Do Van Truong, First-principles investigation on the electromechanical properties of monolayer 1H Pb-Dichalcogenides, Materials Research Society of Korea, 33 (2023) 189-194. https://doi.org/10.3740/MRSK.2023.33.5.189
[4]. Z. Zhen, G. Jie, L. Dan, T. David, Designing Isoelectronic Counterparts to Layered Group V Semiconductors, ACS Nano, 9 (2015) 8284-8290. https://doi.org/10.1021/acsnano.5b02742
[5]. Y. Ugur, De. Ilker, D. Çakir, G. Oguz, S. Cem, A systematical ab-initio review of promising 2D MXene monolayers towards Li-ion battery applications, JPhys Energy, 2 (2020) 1-15. https://doi.org/10.1088/2515-7655/ab9fe3
[6]. Hanh Thi Thu Tran, Phi Minh Nguyen, Hoa Van Nguyen, Vi Toan Lam, Tranh Thi Nhu Duong, Tet Vui Chong, Ab Initio Investigation of the Hydrogen Interaction on Two Dimensional Silicon Carbide, ACS Omega, 7 (2022) 47642-47649. https://doi.org/10.1021/acsomega.2c04532
[7]. Nguyen Hoang Linh, Tran The Quang, Nguyen Minh Son, Vuong Van Thanh, Do Van Trương, Prediction of mechanical, electronic and optical properties of monolayer 1T Si-dichalcogenides via first-principles theory, Materials Today Communications, 36 (2023) 1-16. https://doi.org/10.1016/j.mtcomm.2023.106553
[8]. Nguyen Hoang Linh, Tran The Quang, Nguyen Minh Son, To Toan Thang, Vuong Van Thanh, Do Van Truong, Theoretical computational of electronic and transport properties and optical conductivity of monolayer NiS2 under mechanical strain, Journal of science and technology technical universities, 33 (2023) 34-41. https://doi.org/10.51316/jst.164.etsd.2023.33.1.5
[9]. Viet Anh Cao, Minje Kim, Weiguang Hu, Sol Lee, Sukhyeong Youn, Jiwon Chang, et al., Enhanced Piezoelectric Output Performance of the SnS2/SnS Heterostructure Thin-Film Piezoelectric Nanogenerator Realized by Atomic Layer Deposition, ACS Nano, 15 (2021) 10428-10436. https://doi.org/10.1021/acsnano.1c02757
[10]. Z. Luwei, W. Ning, L. Yuliang, Design, synthesis, and application of some two-dimensional materials, Chemical Science, 14 (2023) 5266-5290. https://doi.org/10.1039/d3sc00487b
[11]. K. Karim, T. A. Khan, A. Muhammad, W. Renheng, Z. Yupeng, M. Asif, et al., Recent developments in emerging two-dimensional materials and their applications, Journal of Materials Chemistry C, 8 (2020) 387-440. https://doi.org/10.1039/c9tc04187g
[12]. Q. Alam, S. Muhammad, M. Idrees, N. V. Hieu, N. T. T. Binh, C. Nguyen, et al., First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers, RSC Advances, 11 (2021) 14263-14268. https://doi.org/10.1039/d0ra10808a
[13]. W. J. Zhao, L. Ma, L. Cai. Ma, X. H. Tian, J. M. Zhang, First-principles study on the photocatalytic property of SiS/BSe and SiS2/BSe van der Waals heterojunctions, The European Physical Journal B, 96 (2023) 92-102. https://doi.org/10.1140/epjb/s10051-023-00569-0
[14]. S. Behzad, R. Chegel, First-principles study of the band structure and optical spectra of germanium carbide under mechanical strain, Journal of Electron Spectroscopy and Related Phenomena, 242 (2020) 1-19. https://doi.org/10.1016/j.elspec.2020.146969
[15]. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J Phys Condens Matter, 21 (2009) 1-19. https://doi.org/10.1088/0953-8984/21/39/395502
[16]. J. Heyd, G. E. Scuseria, Hybrid functionals based on a screened Coulomb potential, Journal of Chemical Physics, 118 (2003) 8207-8215. https://doi.org/10.1063/1.1564060
[17]. Nguyen Hoang Linh, Nguyen Minh Son, Tran The Quang, To Toan Thang, Vuong Van Thanh, Dinh The Hung, et al., Physico‒mechanical Properties and Carrier Mobility of HfS2 Monolayer, in: Kacprzyk J., Lecture Notes in Networks and Systems, 944,Springer Nature Switzerland AG, Switzerland 2024, 20-26.
[18]. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters, 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
[19]. H. J. Monkhorst, J. D. Pack, Special points for Brillonin-zone integrations, Physical Review B, 13 (1976) 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
[20]. Nguyen Hoang Linh, Tran The Quang, Nguyen Minh Son, Nguyen Van Hoi, Vuong Van Thanh, Do Van Truong, First-principles study of electronic and optical properties and photocatalytic performance of MS monolayer under strain, Journal of science and technology technical universities, 33 (2023) 44-51. https://doi.org/10.51316/jst.165.etsd.2023.33.2.7
[21]. A. A. Mostofi, J. R. Yates, G. Pizzi, Y. S. Lee, I. Souza, D. Vanderbilt, et al., An updated version of wannier 90: A tool for obtaining maximally-localised Wannier functions, Computer Physics Communications, 185 (2014) 2309-2310. https://doi.org/10.1016/j.cpc.2014.05.003
[22]. C. G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General considerations, Institute of Maths Applies, 6 (1970) 76-90. https://doi.org/10.1093/imamat/6.1.76
[23]. R. Fletcher, A new appproach to variable metric algorithms, The Computer Journal, 13 (1970) 317-322. https://doi.org/10.1093/comjnl/13.3.317
[24]. D. F. Shanno, Conditioning of Quasi-Newton Methods for Function Minimization, Mathematics of Computation, 24 (1970) 647-656. https://doi.org/10.2307/2004840
[25]. S. S. Ullah, H. U. Din, Sheraz Ahmad, Q. Alam, S. Sardar, B. Amin, et al., Theoretical prediction of the electronic structure, optical properties and photocatalytic performance of type-I SiS/GeC and type-II SiS/ZnO heterostructures, RSC Advances, 13 (2023) 7436-7442. https://doi.org/10.1039/d3ra01061a
[26]. F. Mouhat, F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Physical Review B - Condensed American Physical Society, 90 (2014) 224104-4. https://doi.org/10.1103/PhysRevB.90.224104
[27]. D. Marx, J. Hutter, Ab initio molecular dynamics: Theory and implementation, in: J. Grotendorst., 1,John von Neumann Institute for Computing, J¨ulich, 2000, 301-449.
[28]. Fang Liu, Pingbing Ming, Ju Li, Ab initiocalculation of ideal strength and phonon instability of graphene under tension, Physical Review B, 76 (2007) 064120-7. https://doi.org/10.1103/PhysRevB.76.064120
[29]. Tianshu Li, Ideal strength and phonon instability in single-layer MoS2, Physical Review B, 85 (2012) 235407-4. https://doi.org/10.1103/PhysRevB.85.235407
[30]. J. F. Nye, Physical properties of crystals: their representation by tensors and matrices, New York, USA, Oxford University Press, 1985.
[31]. K. A.N. Duerloo, M. T. Ong, E. J. Reed, Intrinsic piezoelectricity in two-dimensional materials, Journal of Physical Chemistry Letters, 3 (2012) 2871-2876. https://doi.org/10.1021/jz3012436
[32]. R. Fei, W. Li, J. Li, L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS, Applied Physics Letters, 107 (2015) 173104-5. https://doi.org/10.1063/1.4934750
[33]. T. Hu, J. Dong, Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties, Physical Chemistry Chemical Physics, 18 (2016) 32514-32520. https://doi.org/10.1039/c6cp06734d
[34]. R. Bechmann, Elastic and piezoelectric constants of alpha-quartz, Physical review journals archive,110 (1958) 1060-1061. https://doi.org/10.1103/PhysRev.110.1060

Tải xuống

Chưa có dữ liệu thống kê
Nhận bài
06/07/2024
Nhận bài sửa
11/10/2024
Chấp nhận đăng
10/12/2024
Xuất bản
15/12/2024
Chuyên mục
Công trình khoa học
Số lần xem tóm tắt
35
Số lần xem bài báo
15