Study of vibration impact on operators when operating two-wheeled rollers
Email:
minhkha97@lqdtu.edu.vn
Keywords:
Vibratory roller, operator, vibration, dynamic
Abstract
During the operation of a vibratory roller, the vibrations affecting the operator are significant, causing discomfort. This paper presents a dynamic model of a two-drum vibratory roller as a planar model, which takes into account the oscillations of the driver's seat and the elasticity of the ground. Based on the dynamic model, the Lagrange equations of the second kind are used to establish a system of differential equations describing the motion of the mechanical system. The results of the study provide a foundation for evaluating the vibrations affecting the operator under different working conditions and comparing them with ISO standards on acceleration affecting the operator. Furthermore, the paper investigates the impact of the vehicle's center of gravity position on the acceleration experienced by the operator. The findings serve as a basis for further research and improvements to the machine's structure to reduce vibrations affecting the operator while ensuring work efficiency.References
[1]. Trần Hữu Lý, Nghiên cứu xác định chế độ làm việc hợp lý của máy lu rung thi công đất nền đường tuần tra biên giới, Luận án Tiến sĩ, Học viện Kỹ thuật Quân sự, (2012).
[2]. A. Pogany, S. Zdrenghia, Un procedeu de verificare a compactării terasamentelor prin folosirea cilindrului compactor vibrator, XVI-a International Conference, Profesorul Dorin Pavel - fondatorul hidroenergeticii româneşti Sebes, (2016), 593 - 600.
[3]. Dragoş Căpăţînă, Marilena Cristina Niţu, Mihaiela Iliescu, Modeling the vibratory roller compaction process of road soils archives of civil engineering, ISSN 1230-2945, LXIX (2023) 431-444. https://doi.org/10.24425/ace.2023.147668
[4]. Shiping Li, Chunhua Hu, Study on Dynamic Model of Vibratory Roller - Soil System, IOP Conference Series: Earth and Environmental Science, 113 (2018). https://doi.org/10.1088/1755-1315/113/1/012187
[5]. Zhijun Li, Chunquan Xu, Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums, Fuzzy Sets and Systems, 160 (2018) 1787-1803. https://doi.org/10.1016/j.fss.2008.09.013
[6]. Hu Peng, Chen Jiazhen, Zhang Lejin, Wang Kun, Wang Shuping, Chi Lianyang, Discrete element simulation of vibration compaction of slag subgrade, Scientifc Reports, 14 (5039) (2024). https://doi.org/10.1038/s41598-024-55276-2
[7]. Chu Văn Đạt, Trần Hữu Lý, Trịnh Văn Hải, Nghiên cứu động lực học máy lu hai bánh rung tự hành, Tạp chí Khoa học và Kỹ thuật, 144 (2011) 34-39.
[8]. P A Korchagin, I A Teterina, E A Korchagina, Road roller operator’s vibroprotection system improvement, Journal of Physics: Conference Series, 1791 (2021). https://doi.org/10.1088/1742-6596/1791/1/012012
[9]. Huan Yuan, Zhiqiang Zhang, Aoran Yang, Hao Dong, Effect of the mass-stiffness distribution of the vibratory roller cab on the ride quality in low-frequency region, Vibroengineering Procedia, 35 (2020). https://doi.org/10.21595/vp.2020.21688
[10]. Tianyuan Jiang, Vanliem Nguyen, Fan Zhang, Ameliorating vibratory roller quality based on two methods of cab’s horizontal damper and cab’s active suspension, Journal of mechatronics and artificial intelligence in engineering, 5 (2024). https://doi.org/10.21595/jmai.2024.23999
[11]. International Standard ISO 2631-1, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, (2010).
[2]. A. Pogany, S. Zdrenghia, Un procedeu de verificare a compactării terasamentelor prin folosirea cilindrului compactor vibrator, XVI-a International Conference, Profesorul Dorin Pavel - fondatorul hidroenergeticii româneşti Sebes, (2016), 593 - 600.
[3]. Dragoş Căpăţînă, Marilena Cristina Niţu, Mihaiela Iliescu, Modeling the vibratory roller compaction process of road soils archives of civil engineering, ISSN 1230-2945, LXIX (2023) 431-444. https://doi.org/10.24425/ace.2023.147668
[4]. Shiping Li, Chunhua Hu, Study on Dynamic Model of Vibratory Roller - Soil System, IOP Conference Series: Earth and Environmental Science, 113 (2018). https://doi.org/10.1088/1755-1315/113/1/012187
[5]. Zhijun Li, Chunquan Xu, Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums, Fuzzy Sets and Systems, 160 (2018) 1787-1803. https://doi.org/10.1016/j.fss.2008.09.013
[6]. Hu Peng, Chen Jiazhen, Zhang Lejin, Wang Kun, Wang Shuping, Chi Lianyang, Discrete element simulation of vibration compaction of slag subgrade, Scientifc Reports, 14 (5039) (2024). https://doi.org/10.1038/s41598-024-55276-2
[7]. Chu Văn Đạt, Trần Hữu Lý, Trịnh Văn Hải, Nghiên cứu động lực học máy lu hai bánh rung tự hành, Tạp chí Khoa học và Kỹ thuật, 144 (2011) 34-39.
[8]. P A Korchagin, I A Teterina, E A Korchagina, Road roller operator’s vibroprotection system improvement, Journal of Physics: Conference Series, 1791 (2021). https://doi.org/10.1088/1742-6596/1791/1/012012
[9]. Huan Yuan, Zhiqiang Zhang, Aoran Yang, Hao Dong, Effect of the mass-stiffness distribution of the vibratory roller cab on the ride quality in low-frequency region, Vibroengineering Procedia, 35 (2020). https://doi.org/10.21595/vp.2020.21688
[10]. Tianyuan Jiang, Vanliem Nguyen, Fan Zhang, Ameliorating vibratory roller quality based on two methods of cab’s horizontal damper and cab’s active suspension, Journal of mechatronics and artificial intelligence in engineering, 5 (2024). https://doi.org/10.21595/jmai.2024.23999
[11]. International Standard ISO 2631-1, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration, (2010).
Downloads
Download data is not yet available.
Received
23/10/2024
Revised
17/03/2025
Accepted
10/04/2025
Published
15/04/2025
Type
Research Article
How to Cite
Nguyễn Minh, K., Lê Văn, D., & Trần Đức, T. (1744650000). Study of vibration impact on operators when operating two-wheeled rollers. Transport and Communications Science Journal, 76(3), 282-293. https://doi.org/10.47869/tcsj.76.3.7
Abstract Views
114
Total Galley Views
82





