Effect of groove depth on drag and aerodynamic characteristics of axisymmetric boattail models with longitudinal grooves

  • Quyen Dam Vu Son

    Hanoi Institute of Technology, Hanoi, Vietnam, No 3 Cau Vong, Duc Thang, Bac Tu Liem, Hanoi, Vietnam
  • Quang Nguyen Dinh

    Le Quy Don Technical University, No 236 Hoang Quoc Viet Street, Bac Tu Liem, Hanoi, Vietnam
  • Hung Tran The

    Le Quy Don Technical University, No 236 Hoang Quoc Viet Street, Bac Tu Liem, Hanoi, Vietnam
Email: tranthehung_k24@lqdtu.edu.vn
Keywords: RANS k-ω SST, longitudinal groove, axisymmetric boattail, flow separation

Abstract

Reducing drag on boattail configurations remains a critical challenge in external aerodynamics. In this work, numerical simulations were conducted to examine the influence of longitudinal groove depth – represented by the groove-peak distance parameter A – on the flow behavior and drag characteristics of axisymmetric boattail bodies. The parameter A was varied between 0 and 0.3 times the body diameter (D). The computations employed the Reynolds-Averaged Navier–Stokes (RANS) equation for the similation. The k-ω SST turbulence model at a freestream velocity of 22 m/s. Results indicate that groove depth has negligible effect on drag at a 14° boattail angle, but at 18° a substantial reduction in drag of up to 11% was obtained for A = 0.3D. Analysis of pressure distribution, skin friction, and wake structure confirms that deeper grooves help suppress flow separation on the boattail surface. These findings highlight the importance of groove depth selection for optimizing aerodynamic efficiency in axisymmetric vehicles

References

[1]. R. Merz, R. Page, and C. Przirembel, Subsonic axisymmetric near-wake studies, AIAA journal, 16 (1978) 656–662.
[2]. R. J. Krieger, S. R. Vukelich, Tactical missile drag, tactical missile aerodynamics, Progress in Astronautical Aeronautic AIAA, 104 (1986) 383–420.
[3]. P. R. Viswanath, Flow management techniques for base and afterbody drag reduction, Progress in Aerospace Science, 32 (1996) 79–129. http://doi.org/10.1016/0376-0421(95)00003-8
[4]. G. Rigas, A. Oxlade, A. Morgans, and J. Morrison, Low-dimensional dynamics of a turbulent axisymmetric wake, Journal of Fluid Mechanics, 755 (2014) R5.
[5]. W. Jiajan, R. Chue, T. Nguyen, and S. Yu, Boattail juncture shaping for spin-stabilized rounds in supersonic flight, Shock Waves, 25 (2015) 189–204.
[6]. L. Wu, Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales, Scientific Reports, 8 (2018) 12186.
[7]. T.H. Tran, H.Q. Dinh, H.Q. Chu, V.Q. Duong, C. Pham, V.M. Do, Effect of boattail angle on near-wake flow and drag of axisymmetric models: a numerical approach, Journal of Mechanical Science and Technology, 35 (2021) 563–573. http://doi.org/10.1007/s12206-021-0115-1
[8]. F. G. Howard, W. L. Goodman, Axisymmetric bluff-body drag reduction through geometrical modification, Journal of Aircraft, 22 (1985) 516–522. http://doi.org/10.2514/3.45158
[9]. A. Mariotti, G. Buresti, G. Gaggini, M.V. Salvetti, Separation control and drag reduction for boat-tailed axisymmetric bodies through contoured transverse grooves, Journal of Fluid Mechanics, 832 (2017) 514–549. http://doi.org/10.1017/jfm.2017.676
[10]. A. Mariotti, G. Buresti, M.V. Salvetti, Separation delay through contoured transverse grooves on a 2D boat-tailed bluff body: Effects on drag reduction and wake flow features, European Journal of Mechanics-B/Fluids, 74 (2019) 351–362. https://doi.org/10.1016/j.euromechflu.2018.09.009
[11]. N.D. Quang, T.H. Tran, D.A. Le, N.T Hieu, V.K Pham, T.S Ha, Drag reduction for axisymmetric boattail model by longitudinal groove cavity under low-speed conditions, Journal of Mechanical Science and Technology, 38 (2024) 4209–4220. https://doi.org/10.1007/s12206-024-0718-4
[12]. T.H. Tran, T. Ambo, T. Lee, L. Chen, T. Nonomura, K. Asai, Effect of boattail angles on the flow pattern on an axisymmetric afterbody surface at low speed, Experimental Thermal and Fluid Science, 99 (2018) 324–335. http://doi.org/10.1016/j.expthermflusci.2018.07.034
[13]. T.H. Tran, T. Ambo, T. Lee, T. Ozawa, L. Chen, T. Nonomura, K. Asai, Effect of Reynolds number on flow behavior and pressure drag of axisymmetric conical boattails at low speeds, Expriments in Fluids, 60 (2019) 1–19. http://doi.org/10.1007/s00348-019-2680-y

Downloads

Download data is not yet available.
Received
13/10/2024
Revised
12/08/2025
Accepted
11/09/2025
Published
15/09/2025
Type
Research Article
How to Cite
Dam Vu Son, Q., Nguyen Dinh, Q., & Tran The, H. (1757869200). Effect of groove depth on drag and aerodynamic characteristics of axisymmetric boattail models with longitudinal grooves. Transport and Communications Science Journal, 76(7), 939-950. https://doi.org/10.47869/tcsj.76.7.2
Abstract Views
80
Total Galley Views
18