Aerodynamic characteristics of axisymmetric boattail models with different number of longitudinal groove cavities
Email:
tranthehung_k24@lqdtu.edu.vn
Từ khóa:
Boattail, grooves, axisymmetric boattail model, numerical simulation
Tóm tắt
Reducing aerodynamic drag and increasing flying object performance is an important task in aerospace engineering. The high drag occurs for blunt base models, which are not only for missiles, and projectiles but also for building, bridges. This study presents numerical results regarding subsonic flow characteristics over axisymmetric boattail models equipped with longitudinal grooves, with the number of grooves ranging from 2 to 12. The standard model has a fixed boattail length of 0.7D and an angle 22°. The investigation employs numerical simulation methods utilizing the Reynolds-averaged Navier-Stokes (RANS) equations with the k-ω SST turbulent model. The boundary layer was captured well by the current simulation. The numerical results are initially validated against both simulated and experimental data from previous studies, ensuring accuracy and reliability. The findings indicate that an increase in the number of grooves from 0 to 4 results in a slight increment in drag. However, as the number of grooves is further increased from 6 to 12, a significant reduction in the model's drag is observed. Additionally, the flow patterns around the boattail model are visually depicted and analyzed to explain the drag trend of the model with different groove configurationsTài liệu tham khảo
[1]. R.J. Krieger, S.R. Vukelich, Tactical missile drag, tactical missile aerodynamics, Progress in Astronautical Aeronautic AIAA, 104 (1986) 383–420.
[2]. P. R. Viswanath, Flow management techniques for base and afterbody drag reduction, Progress in Aerospace Science, 32 (1996) 79–129. http://doi.org/10.1016/0376-0421(95)00003-8
[3]. F.G. Howard, W. L. Goodman, Axisymmetric bluff-body drag reduction through geometrical modification, Journal of Aircraft, 22 (1985) 516–522. http://doi.org/10.2514/3.45158
[4]. A.W. Lang, P. Motta, P. Hidalgo, M. Westcott, Bristled shark skin: a microgeometry for boundary layer control, Bioinspiration & Biomimetics, 3 (2008) 046005. http://doi.org/10.1088/1748-3182/3/4/046005
[5]. Y.F. Fu, C.Q. Yuan, X.Q. Bai, Marine drag reduction of shark skin inspired riblet surfaces, Biosurface and Biotribology, 3 (2017) 11–24. https://doi.org/10.1016/j.bsbt.2017.02.001
[6]. A. Mariotti, G. Buresti, G. Gaggini, M.V. Salvetti, Separation control and drag reduction for boat-tailed axisymmetric bodies through contoured transverse grooves, Journal of Fluid Mechanics, 832 (2017) 514–549. http://doi.org/10.1017/jfm.2017.676
[7]. P. Ball, Shark skin and other solutions, Nature, 400 (1999) 6744. http://doi.org/10.1038/22883
[8]. A. Mariotti, G. Buresti, M.V. Salvetti, Separation delay through contoured transverse grooves on a 2D boat-tailed bluff body: Effects on drag reduction and wake flow features, European Journal of Mechanics-B/Fluids, 74 (2019) 351–362. https://doi.org/10.1016/j.euromechflu.2018.09.009
[9]. A. Ibrahim, A. Filippone, Supersonic aerodynamics of a projectile with slot cavities, Aeronautical Journal, 114 (2000) 15–24. https://doi.org/10.1017/S0001924000003493
[10]. T.H. Tran, T. Ambo, T. Lee, L. Chen, T. Nonomura, K. Asai, Effect of boattail angles on the flow pattern on an axisymmetric afterbody surface at low speed, Experimental Thermal and Fluid Science, 99 (2018) 324–335. http://doi.org/10.1016/j.expthermflusci.2018.07.034
[11]. T.H. Tran, T. Ambo, T. Lee, T. Ozawa, L. Chen, T. Nonomura, K. Asai, Effect of Reynolds number on flow behavior and pressure drag of axisymmetric conical boattails at low speeds, Expriments in Fluids, 60 (2019) 1–19. http://doi.org/10.1007/s00348-019-2680-y
[12]. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32 (1994) 1598–1605. https://doi.org/10.2514/3.12149
[13]. T.H. Tran, H.Q. Dinh, H.Q. Chu, V.Q. Duong, C. Pham, V.M. Do, Effect of boattail angle on near-wake flow and drag of axisymmetric models: a numerical approach, Journal of Mechanical Science and Technology, 35 (2021) 563–573. http://doi.org/10.1007/s12206-021-0115-1
[14]. D. Lee, S. Kawai, T. Nonomura, M. Anyoji, H. Aono, A. Oyama, K. Fujii, Mechanisms of surface pressure distribution within a laminar separation bubble at different Reynolds numbers, Physics of Fluids, 27 (2015). http://doi.org/10.1063/1.4913500
[2]. P. R. Viswanath, Flow management techniques for base and afterbody drag reduction, Progress in Aerospace Science, 32 (1996) 79–129. http://doi.org/10.1016/0376-0421(95)00003-8
[3]. F.G. Howard, W. L. Goodman, Axisymmetric bluff-body drag reduction through geometrical modification, Journal of Aircraft, 22 (1985) 516–522. http://doi.org/10.2514/3.45158
[4]. A.W. Lang, P. Motta, P. Hidalgo, M. Westcott, Bristled shark skin: a microgeometry for boundary layer control, Bioinspiration & Biomimetics, 3 (2008) 046005. http://doi.org/10.1088/1748-3182/3/4/046005
[5]. Y.F. Fu, C.Q. Yuan, X.Q. Bai, Marine drag reduction of shark skin inspired riblet surfaces, Biosurface and Biotribology, 3 (2017) 11–24. https://doi.org/10.1016/j.bsbt.2017.02.001
[6]. A. Mariotti, G. Buresti, G. Gaggini, M.V. Salvetti, Separation control and drag reduction for boat-tailed axisymmetric bodies through contoured transverse grooves, Journal of Fluid Mechanics, 832 (2017) 514–549. http://doi.org/10.1017/jfm.2017.676
[7]. P. Ball, Shark skin and other solutions, Nature, 400 (1999) 6744. http://doi.org/10.1038/22883
[8]. A. Mariotti, G. Buresti, M.V. Salvetti, Separation delay through contoured transverse grooves on a 2D boat-tailed bluff body: Effects on drag reduction and wake flow features, European Journal of Mechanics-B/Fluids, 74 (2019) 351–362. https://doi.org/10.1016/j.euromechflu.2018.09.009
[9]. A. Ibrahim, A. Filippone, Supersonic aerodynamics of a projectile with slot cavities, Aeronautical Journal, 114 (2000) 15–24. https://doi.org/10.1017/S0001924000003493
[10]. T.H. Tran, T. Ambo, T. Lee, L. Chen, T. Nonomura, K. Asai, Effect of boattail angles on the flow pattern on an axisymmetric afterbody surface at low speed, Experimental Thermal and Fluid Science, 99 (2018) 324–335. http://doi.org/10.1016/j.expthermflusci.2018.07.034
[11]. T.H. Tran, T. Ambo, T. Lee, T. Ozawa, L. Chen, T. Nonomura, K. Asai, Effect of Reynolds number on flow behavior and pressure drag of axisymmetric conical boattails at low speeds, Expriments in Fluids, 60 (2019) 1–19. http://doi.org/10.1007/s00348-019-2680-y
[12]. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal, 32 (1994) 1598–1605. https://doi.org/10.2514/3.12149
[13]. T.H. Tran, H.Q. Dinh, H.Q. Chu, V.Q. Duong, C. Pham, V.M. Do, Effect of boattail angle on near-wake flow and drag of axisymmetric models: a numerical approach, Journal of Mechanical Science and Technology, 35 (2021) 563–573. http://doi.org/10.1007/s12206-021-0115-1
[14]. D. Lee, S. Kawai, T. Nonomura, M. Anyoji, H. Aono, A. Oyama, K. Fujii, Mechanisms of surface pressure distribution within a laminar separation bubble at different Reynolds numbers, Physics of Fluids, 27 (2015). http://doi.org/10.1063/1.4913500
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
31/05/2024
Nhận bài sửa
04/09/2024
Chấp nhận đăng
10/09/2024
Xuất bản
15/09/2024
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Tran The, H., Nguyen Dinh, Q., & Le Dinh, A. (1726333200). Aerodynamic characteristics of axisymmetric boattail models with different number of longitudinal groove cavities. Tạp Chí Khoa Học Giao Thông Vận Tải, 75(7), 2058-2069. https://doi.org/10.47869/tcsj.75.7.4
Số lần xem tóm tắt
70
Số lần xem bài báo
20