Bending and buckling responses of organic nanoplates considering the size effect
Email:
thom.dovan.mta@gmail.com
Từ khóa:
bending; buckling; nanoplates; Navier solution; nonlocal theory; Organic solar cells
Tóm tắt
As humanity progresses, fossil fuel reserves are being increasingly exhausted, leading to increased focus on sustainable energy alternatives. Scientists are now researching solar panels that can efficiently convert solar energy into electricity for human use. This research employs a novel third-order shear deformation theory to investigate the static buckling and static bending behaviors of organic nanoplates, marking the first instance of such an approach being used. The formulas are computed using strain gradient theory to consider the impact of the size effect, where this size effect parameter is considered in both positive and negative cases. The plate's balancing equation is derived using the notion of virtual displacement, and the analytical solution is obtained using Navier's solution. The mathematical expression for deflection and critical buckling load in this study has been validated by comparing it with previously published analytical findings. This study also includes a set of numerical calculations to demonstrate the impact of certain geometric factors and the size effect on the static bending response and static buckling of organic plates. This study aims to assist designers in developing organic plate products that demonstrate optimal functionality in real-world applicationsTài liệu tham khảo
[1]. H. Hoppe, N. S. Sariciftci, Organic solar cells: An overview, J. Mater. Res., 19 (2004) 1924–1945. https://doi.org/10.1557/JMR.2004.0252.
[2]. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D.Haen, A. Franquet, V. Spampinato, T. Conard, W.Maes, W. Deferme, J V. Manca, Organic and perovskite solar cells for space applications, Sol. Energy Mater. Sol. Cells, 182 (2018) 121–127. https://doi.org/10.1016/j.solmat.2018.03.024.
[3]. Z. Wu, Y. Zhang, Z. Huan, Solving Post-Buckling Characteristic of Thermal-Resistance Films Attached to Glass Façade via an Optimization Method, Int. J. Struct. Stab. Dyn, 19 (2019). https://doi.org/10.1142/S0219455419500688.
[4]. F. Nehm, T. Pfeiffelmann, F. Dollinger, L. Müller-Meskamp, K. Leo, Influence of aging climate and cathode adhesion on organic solar cell stability, Sol. Energy Mater. Sol. Cells, 168, (2017) 1–7. https://doi.org/10.1016/j.solmat.2017.03.037.
[5]. M. Tavakkoli, R. Ajeian, M. Nakhaee Badrabadi, S. Saleh Ardestani, S. M. H. Feiz, K. Elahi Nasab, Progress in stability of organic solar cells exposed to air, Sol. Energy Mater. Sol. Cells, 95 (2011) 1964–1969. https://doi.org/10.1016/j.solmat.2011.01.029.
[6]. T. F. O’Connor, A.V. Zaretski, S. Savagatrup, A.D. Printz, C.D. Wilkes, M.I. Diaz, E.J. Sawyer, D. J. Lipomi, Wearable organic solar cells with high cyclic bending stability: Materials selection criteria, Sol. Energy Mater. Sol. Cells, 144 (2016) 438–444. https://doi.org/10.1016/j.solmat.2015.09.049.
[7]. Y. L. Pei, P. S. Geng, L. X. Li, A modified higher-order theory for FG beams, Eur. J. Mech. A/Solids, 72 (2018) 186–197. https://doi.org/10.1016/j.euromechsol.2018.05.008.
[8]. A. Cemal Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., pp. 1–16, 1972.
[9]. F. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39 (2002) 2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
[10]. D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51 (2003) 1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
[11]. Q. Li, D. Wu, W. Gao, F. Tin-Loi, Z. Liu, J. Cheng, Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory, Eur. J. Mech. A/Solids, 78 (2019) 103852. https://doi.org/10.1016/j.euromechsol.2019.103852.
[12]. Q. Li, D. Wu, W. Gao, F. Tin-Loi, Size-dependent instability of organic solar cell resting on Winkler–Pasternak elastic foundation based on the modified strain gradient theory, Int. J. Mech. Sci., 177 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105306.
[13]. N. D. Duc, K. Seung-Eock, T. Q. Quan, D. D. Long, V. M. Anh, Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell, Compos. Struct., 184 (2018) 1137–1144. https://doi.org/10.1016/j.compstruct.2017.10.064.
[14]. S. Liu, K. Wang, B. Wang, J. Li, C. Zhang, Size effect on thermo-mechanical instability of micro/nano scale organic solar cells, Meccanica, 57 (2022) 87–107. https://doi.org/10.1007/s11012-021-01411-6.
[15]. M. K. Hamed, T. Masoud, A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips, Adv. in nano research, 12 (2022) 427-440. https://doi.org/10.12989/anr.2022.12.4.427.
[16]. A. Naderi, The nonlocal parameter for three-dimensional nonlocal elasticity analyses of square graphene sheets: An exact buckling analysis, Proc. Inst. Mech. Eng Part N, 236 (2022) 41-48. https://doi.org/10.1177/2397791421102982
[17]. I. Esen, R. Özmen, Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity, Comp. Struct, 296 (2022) 115878. https://doi.org/10.1016/j.compstruct.2022.115878
[18]. Q. Jin, Y. Ren, Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre- and post-buckled FG nanotubes, Comm. Nonl. Science Num. Sim, 104 (2022) 106044. https://doi.org/10.1016/j.cnsns.2021.106044
[19]. T. Hai, M. M. Al-Masoudy, S. Alsulamy, M. H. E. Ouni, A. Ayvazyan, A. Kumar, Moving load analysis on cross/angle-ply laminated composite nanoplates resting on viscoelastic foundation, Comp. Struct, 305 (2023) 116540. https://doi.org/10.1016/j.compstruct.2022.116540
[20]. B. V. Tuyen. Free Vibration Behaviors of Nanoplates Resting on Viscoelastic Medium. Arabian J. Science Eng, 48 (2023) 11511–11524. https://doi.org/10.1007/s13369-022-07500-2
[21]. P.H. Wan, M.S.H. Al-Furjan, R. Kolahchi, L. Shan, Application of DQHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming CNTs’ waviness and agglomeration, Mech. Syst. Sign. Proc, 189 (2023) 110064. https://doi.org/10.1016/j.ymssp.2022.110064
[22]. D. T. Luat, D. Van Thom, T. T. Thanh, P. Van Minh, T. Van Ke, P. V. Vinh, Mechanical analysis of bi-functionally graded sandwich nanobeams, Adv. Nano Res., 11 (2021) 55–71. https://doi.org/10.12989/anr.2021.11.1.055.
[23]. D. H. Duc, D. Van Thom, P. H. Cong, P. Van Minh, N. X. Nguyen, Vibration and static buckling behavior of variable thickness flexoelectric nanoplates, Mech. Based Des. Struct. Mach, 51 (2022) 7102-7130. https://doi.org/10.1080/15397734.2022.2088558
[24]. D. H. Doan, A. M. Zenkour, D. Van Thom, Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects, Eur. Phys. J. Plus, 137 (2022). https://doi.org/10.1140/epjp/s13360-022-02631-9.
[25]. D. N. Thai, P. Van Minh, C. Phan Hoang, T. Ta Duc, N. Nguyen Thi Cam, D. Nguyen Thi, Bending of Symmetric Sandwich FGM Beams with Shear Connectors, Math. Probl. Eng, 2021 (2021). https://doi.org/10.1155/2021/7596300.
[26]. D. V. Thom, D. H. Duc, P. V. Minh, N. S. Tung, Finite Element Modelling for Free Vibration Response of Cracked Stiffened Fgm Plates,” Vietnam J. Sci. Technol., 58 (2020) 119. https://doi.org/10.15625/2525-2518/58/1/14278.
[27]. P. V. Vinh, N. T. Dung, N. C. Tho, D. V. Thom, L. K. Hoa, Modified single variable shear deformation plate theory for free vibration analysis of rectangular FGM plates, Struct., 29 (2021) 1435-1444. https://doi.org/10.1016/j.istruc.2020.12.027.
[28]. D. M. Tien, D. V. Thom, N. T. H. Van, A. Tounsi, P. V. Minh, D. N. Mai, Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account, Comp. Concr, 32 (2023) 553-565. https://doi.org/10.12989/cac.2023.32.6.553
[29]. R. P. Shimpi, Refined plate theory and its variants, AIAA J, 40 (2002) 137–146. https://doi.org/10.2514/3.15006.
[30]. B. Babu, B.P. Patel, A new computationally efficient finite element formulation for nanoplates using secondorder strain gradient Kirchhoff’s plate theory, Comp. Part B: Engineering, 168 (2019) 302-311. https://doi.org/10.1016/j.compositesb.2018.12.066
[31]. R. Ansari, R. Gholami, H. Rouhi, Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories, Comp. Part B: Engineering, 43 (2012) 2985-2989. https://doi.org/10.1016/j.compositesb.2012.05.049.
[32]. M. Sobhy, Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions, J. Mechanics 30 (2014) 443–453. https://doi.org/10.1017/jmech.2014.46
[33]. M. Sobhy, A. F. Radwan, A New Quasi 3D Nonlocal Plate Theory for Vibration and Buckling of FGM Nanoplates. International Journal of Applied Mechanics, 9 (2017) 1750008. https://doi.org/10.1142/S1758825117500089
[2]. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D.Haen, A. Franquet, V. Spampinato, T. Conard, W.Maes, W. Deferme, J V. Manca, Organic and perovskite solar cells for space applications, Sol. Energy Mater. Sol. Cells, 182 (2018) 121–127. https://doi.org/10.1016/j.solmat.2018.03.024.
[3]. Z. Wu, Y. Zhang, Z. Huan, Solving Post-Buckling Characteristic of Thermal-Resistance Films Attached to Glass Façade via an Optimization Method, Int. J. Struct. Stab. Dyn, 19 (2019). https://doi.org/10.1142/S0219455419500688.
[4]. F. Nehm, T. Pfeiffelmann, F. Dollinger, L. Müller-Meskamp, K. Leo, Influence of aging climate and cathode adhesion on organic solar cell stability, Sol. Energy Mater. Sol. Cells, 168, (2017) 1–7. https://doi.org/10.1016/j.solmat.2017.03.037.
[5]. M. Tavakkoli, R. Ajeian, M. Nakhaee Badrabadi, S. Saleh Ardestani, S. M. H. Feiz, K. Elahi Nasab, Progress in stability of organic solar cells exposed to air, Sol. Energy Mater. Sol. Cells, 95 (2011) 1964–1969. https://doi.org/10.1016/j.solmat.2011.01.029.
[6]. T. F. O’Connor, A.V. Zaretski, S. Savagatrup, A.D. Printz, C.D. Wilkes, M.I. Diaz, E.J. Sawyer, D. J. Lipomi, Wearable organic solar cells with high cyclic bending stability: Materials selection criteria, Sol. Energy Mater. Sol. Cells, 144 (2016) 438–444. https://doi.org/10.1016/j.solmat.2015.09.049.
[7]. Y. L. Pei, P. S. Geng, L. X. Li, A modified higher-order theory for FG beams, Eur. J. Mech. A/Solids, 72 (2018) 186–197. https://doi.org/10.1016/j.euromechsol.2018.05.008.
[8]. A. Cemal Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci., pp. 1–16, 1972.
[9]. F. Yang, A. C. M. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39 (2002) 2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
[10]. D. C. C. Lam, F. Yang, A. C. M. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51 (2003) 1477–1508. https://doi.org/10.1016/S0022-5096(03)00053-X.
[11]. Q. Li, D. Wu, W. Gao, F. Tin-Loi, Z. Liu, J. Cheng, Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory, Eur. J. Mech. A/Solids, 78 (2019) 103852. https://doi.org/10.1016/j.euromechsol.2019.103852.
[12]. Q. Li, D. Wu, W. Gao, F. Tin-Loi, Size-dependent instability of organic solar cell resting on Winkler–Pasternak elastic foundation based on the modified strain gradient theory, Int. J. Mech. Sci., 177 (2020). https://doi.org/10.1016/j.ijmecsci.2019.105306.
[13]. N. D. Duc, K. Seung-Eock, T. Q. Quan, D. D. Long, V. M. Anh, Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell, Compos. Struct., 184 (2018) 1137–1144. https://doi.org/10.1016/j.compstruct.2017.10.064.
[14]. S. Liu, K. Wang, B. Wang, J. Li, C. Zhang, Size effect on thermo-mechanical instability of micro/nano scale organic solar cells, Meccanica, 57 (2022) 87–107. https://doi.org/10.1007/s11012-021-01411-6.
[15]. M. K. Hamed, T. Masoud, A size-dependent study on buckling and post-buckling behavior of imperfect piezo-flexomagnetic nano-plate strips, Adv. in nano research, 12 (2022) 427-440. https://doi.org/10.12989/anr.2022.12.4.427.
[16]. A. Naderi, The nonlocal parameter for three-dimensional nonlocal elasticity analyses of square graphene sheets: An exact buckling analysis, Proc. Inst. Mech. Eng Part N, 236 (2022) 41-48. https://doi.org/10.1177/2397791421102982
[17]. I. Esen, R. Özmen, Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity, Comp. Struct, 296 (2022) 115878. https://doi.org/10.1016/j.compstruct.2022.115878
[18]. Q. Jin, Y. Ren, Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre- and post-buckled FG nanotubes, Comm. Nonl. Science Num. Sim, 104 (2022) 106044. https://doi.org/10.1016/j.cnsns.2021.106044
[19]. T. Hai, M. M. Al-Masoudy, S. Alsulamy, M. H. E. Ouni, A. Ayvazyan, A. Kumar, Moving load analysis on cross/angle-ply laminated composite nanoplates resting on viscoelastic foundation, Comp. Struct, 305 (2023) 116540. https://doi.org/10.1016/j.compstruct.2022.116540
[20]. B. V. Tuyen. Free Vibration Behaviors of Nanoplates Resting on Viscoelastic Medium. Arabian J. Science Eng, 48 (2023) 11511–11524. https://doi.org/10.1007/s13369-022-07500-2
[21]. P.H. Wan, M.S.H. Al-Furjan, R. Kolahchi, L. Shan, Application of DQHFEM for free and forced vibration, energy absorption, and post-buckling analysis of a hybrid nanocomposite viscoelastic rhombic plate assuming CNTs’ waviness and agglomeration, Mech. Syst. Sign. Proc, 189 (2023) 110064. https://doi.org/10.1016/j.ymssp.2022.110064
[22]. D. T. Luat, D. Van Thom, T. T. Thanh, P. Van Minh, T. Van Ke, P. V. Vinh, Mechanical analysis of bi-functionally graded sandwich nanobeams, Adv. Nano Res., 11 (2021) 55–71. https://doi.org/10.12989/anr.2021.11.1.055.
[23]. D. H. Duc, D. Van Thom, P. H. Cong, P. Van Minh, N. X. Nguyen, Vibration and static buckling behavior of variable thickness flexoelectric nanoplates, Mech. Based Des. Struct. Mach, 51 (2022) 7102-7130. https://doi.org/10.1080/15397734.2022.2088558
[24]. D. H. Doan, A. M. Zenkour, D. Van Thom, Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects, Eur. Phys. J. Plus, 137 (2022). https://doi.org/10.1140/epjp/s13360-022-02631-9.
[25]. D. N. Thai, P. Van Minh, C. Phan Hoang, T. Ta Duc, N. Nguyen Thi Cam, D. Nguyen Thi, Bending of Symmetric Sandwich FGM Beams with Shear Connectors, Math. Probl. Eng, 2021 (2021). https://doi.org/10.1155/2021/7596300.
[26]. D. V. Thom, D. H. Duc, P. V. Minh, N. S. Tung, Finite Element Modelling for Free Vibration Response of Cracked Stiffened Fgm Plates,” Vietnam J. Sci. Technol., 58 (2020) 119. https://doi.org/10.15625/2525-2518/58/1/14278.
[27]. P. V. Vinh, N. T. Dung, N. C. Tho, D. V. Thom, L. K. Hoa, Modified single variable shear deformation plate theory for free vibration analysis of rectangular FGM plates, Struct., 29 (2021) 1435-1444. https://doi.org/10.1016/j.istruc.2020.12.027.
[28]. D. M. Tien, D. V. Thom, N. T. H. Van, A. Tounsi, P. V. Minh, D. N. Mai, Buckling and forced oscillation of organic nanoplates taking the structural drag coefficient into account, Comp. Concr, 32 (2023) 553-565. https://doi.org/10.12989/cac.2023.32.6.553
[29]. R. P. Shimpi, Refined plate theory and its variants, AIAA J, 40 (2002) 137–146. https://doi.org/10.2514/3.15006.
[30]. B. Babu, B.P. Patel, A new computationally efficient finite element formulation for nanoplates using secondorder strain gradient Kirchhoff’s plate theory, Comp. Part B: Engineering, 168 (2019) 302-311. https://doi.org/10.1016/j.compositesb.2018.12.066
[31]. R. Ansari, R. Gholami, H. Rouhi, Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories, Comp. Part B: Engineering, 43 (2012) 2985-2989. https://doi.org/10.1016/j.compositesb.2012.05.049.
[32]. M. Sobhy, Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions, J. Mechanics 30 (2014) 443–453. https://doi.org/10.1017/jmech.2014.46
[33]. M. Sobhy, A. F. Radwan, A New Quasi 3D Nonlocal Plate Theory for Vibration and Buckling of FGM Nanoplates. International Journal of Applied Mechanics, 9 (2017) 1750008. https://doi.org/10.1142/S1758825117500089
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
28/05/2024
Nhận bài sửa
25/06/2024
Chấp nhận đăng
10/09/2024
Xuất bản
15/09/2024
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Dao Minh, T., Do Van, T., Phung Van, M., & Pham Huy, H. (1726333200). Bending and buckling responses of organic nanoplates considering the size effect . Tạp Chí Khoa Học Giao Thông Vận Tải, 75(7), 2015-2029. https://doi.org/10.47869/tcsj.75.7.1
Số lần xem tóm tắt
131
Số lần xem bài báo
64