Nonlinear interfacial contact laws in multi-layer elastic-viscoelastic structural systems

  • Tran Nam Hung

    Le Quy Don Technical University, No 236, Hoang Quoc Viet Street, Hanoi, Vietnam
  • Nguyen Thi Thu Nga

    Le Quy Don Technical University, No 236, Hoang Quoc Viet Street, Hanoi, Vietnam
Email: tranhung@lqdtu.edu.vn
Từ khóa: Nonlinear interfacial laws, homogenization, micro-crack, viscoelastic

Tóm tắt

Layered structures are widely used in construction, such as pavement structures consisting of multiple layers of different materials or interfaces between bricks and mortar in masonry structures, etc. In analyzing such structures, understanding the properties of the interface between two layers of materials is essential. If one layer of material contains cracks and layers exhibit viscoelastic behavior, determining the properties of the interface becomes challenging. This study proposes a constitutive mechanical law to model the behavior of the interface between a microcracked viscoelastic medium and an undamaged elastic body based on the homogenization method. The interface is modeled by a layer of zero thickness. The coupling between the homogenization technique and the Griffith’s theory is used to provide the effective behavior of the micro-cracked medium. The interface is modelled as an effective medium (EF) characterized by normal and tangential stiffnesses (CN, CT ). In this work, two viscoelastic models are considered, i.e., Burger and Modified Maxwell. The formulas of CN and CT for two cases of crack distributions (isotropic and transversely isotropic) are obtained by asymptotic techniques where the thickness of the joint tends to zero

Tài liệu tham khảo

[1]. E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, R. O. Ritchie, Tough, bio-inspired hybrid materials, Science, 322 (2008) 1516-1520.
[2]. J. Zhang, K. Chaisombat, S. He, C. H. Wang, Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures, Mater Design, 36 (2012) 75-80. https://doi.org/10.1016/j.matdes.2011.11.006
[3]. T. T. N. Nguyen, N. H. Tran, Modelling of contact interface between two material layers in hybrid structures. Transport and Communications Science Journal, 71 (2020) 419-430. https://doi.org/10.25073/tcsj.71.4.10
[4]. P. A. Teeuwen, C. S. Kleinman, H. H. Snijder, H. Hofmeyer, Experiments and FE-model for a connection between steel frames and precast concrete infill panels (Stuttgart), 2nd International Symposium on Connections between Steel and Concrete, 2007 Sep 04-07, Ibidem-Verlag (2007), 1093-1102.
[5]. H. Tan, Y. Huang, C. Liu, P. H. Geubelle, The Mori–Tanaka method for composite materials with nonlinear interface debonding, Int J Plasticity, 21 (2005) 1890-1918. https://doi.org/10.1016/j.ijplas.2004.10.001
[6]. J. W. Giancapro, C. G. Papakonstantinou, P. N. Balagura. Flexural response of inorganic hybrid composites with E-glass and carbon fibers, J Eng Mater Technol, 132 (2010) 1–8. https://doi.org/10.1115/1.4000670
[7]. Z. I. Djamai, M. Bahrar, F. Salvatore, A.S. Larbi, M. El Mankibi, Textile reinforced concrete multiscale mechanical modelling: Application to TRC sandwich panels, Finite Elem Anal Des, 135 (2017) 22-35. https://doi.org/10.1016/j.finel.2017.07.003
[8]. M. Dhanasekar, A.W. Page, P.W. Kleeman, The failure of brick masonry under biaxial stresses, Proceedings of the Institution of Civil Engineers, 79 (1985) 295–313. https://doi.org/10.1680/iicep.1985.992
[9]. L. H. Sneed, T. D’Antino, C. Carloni, Investigation of bond behavior of PBO fiber-reinforced cementitious matrix composite-concrete interface, ACI Mater J, 111 (2014) 569-580.
[10]. O. Awani, T. El-Maaddawy, N. Ismail, Fabric-reinforced cementitious matrix: A promising strengthening technique for concrete structures, Constr Build Mater, 132 (2017) 94-111. https://doi.org/10.1016/j.conbuildmat.2016.11.125
[11]. F. de Andrade Silva, M. Butler, S. Hempel, R. D. Toledo Filho, V. Mechtcherine, Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete, Cement Concrete Comp, 48 (2014) 26-34. https://doi.org/10.1016/j.cemconcomp.2014.01.007
[12]. H. R. Lotfi, P.B. Shing, Interface model applied to fracture of masonry structures, J Struct Eng, 120 (1994) 63-80. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:1(63)
[13]. M. R. Wisnom, Modelling the effect of cracks on interlaminar shear strength, Compos Part A-Appl S, 27 (1996) 17–24. https://doi.org/10.1016/1359-835X(95)00007-O
[14]. L. Ombres, Debonding analysis of reinforced concrete beams strengthened with fibre reinforced cementitious mortar, Eng Fract Mech, 81 (2012) 94-109. https://doi.org/10.1016/j.engfracmech.2011.06.012
[15]. S. M. Raoof, L. N. Koutas, D. A. Bournas, Bond between textile-reinforced mortar (TRM) and concrete substrates: experimental investigation, Compo Part B-Eng, 98 (2016) 350-361. https://doi.org/10.1016/j.compositesb.2016.05.041
[16]. I. Carol, C. M. Lopez, O. Roa, Micromechanical analysis of quasi-brittle materials using fracture‐based interface elements, Int J Numer Meth Eng, 52 (2001) 193-215. https://doi.org/10.1002/nme.277
[17]. M. R. Wisnom, Modelling discrete failures in composites with interface elements, Compos Part A-Appl S, 41 (2010) 795-805. https://doi.org/10.1016/j.compositesa.2010.02.011
[18]. A. Rekik, F. Lebon, Homogenization methods for interface modeling in damaged masonry. Adv Eng Softw, 46 (2012) 35-42. https://doi.org/10.1016/j.advengsoft.2010.09.009
[19]. A. Needleman, D. Coker, A. J. Rosakis, Fast crack growth along interfaces, Lat Am J Solids Stru, 2 (2005) 5-15.
[20]. N. Ranganathan, K. Oksman, S. K. Nayak, M. Sain, Structure property relation of hybrid biocomposites based on jute, viscose and polypropylene: The effect of the fibre content and the length on the fracture toughness and the fatigue properties, Compos Part A-Appl S, 83 (2016) 169-175. https://doi.org/10.1016/j.compositesa.2015.10.037
[21]. J. Reinoso, M. Paggi, A. Blazquez, A nonlinear finite thickness cohesive interface element for modeling delamination in fibre-reinforced composite laminates, Compo Part B-Eng, 109 (2017) 116-128. https://doi.org/10.1016/j.compositesb.2016.10.042
[22]. S. T. Nguyen, M. H. Vu, M. N. Vu, T. T. N. Nguyen, Generalized Maxwell model for micro-cracked viscoelastic materials, Int J Damage Mechs, 26 (2017) 697-710. https://doi.org/10.1177/1056789515608231
[23]. A. Rekik, T. T. N. Nguyen, A. Gasser, Coupling between homogenization techniques and brittle mechanics for modelling the behaviour of micro-cracked refractory linings, 14th Biennial Worldwide Congress UNITECR 2015, 2015 Sep, Vienne, Austria: Hal, 2016.
[24]. D. Lenczner, Creep and prestress losses in brick masonry, Struct Eng, 64 (1986), 57–62.
[25]. K. K. Choi, S. L. Lissel, M. M. Reda Taha, Rheological modelling of masonry creep, Can J Civil Eng, 34 (2007) 1506–1517. https://doi.org/10.1139/L07-06
[26]. S. T. Nguyen, L. Dormieux, Y. L. Pape, J. Sanahuja, A Burger model for the effective behavior of a microcracked viscoelastic solid, Int J Damage Mechs, 20 (2011) 1116-1129. https://doi.org/10.1177/1056789510395554
[27]. T. T. N. Nguyen, S. T. Nguyen, M. H. Vu, M. N. Vu, A. Gasser, A. Rekik, Effective viscoelastic properties of micro-cracked heterogeneous materials, Int J Damage Mechs, 25 (2016) 557-573. https://doi.org/10.1177/1056789515605557
[28]. A. Rekik, T. T. N. Nguyen, A. Gasser, Multi-level modeling of viscoelastic microcracked masonry, Int. J. Solids. Stru., 81 (2016) 63-83. https://doi.org/10.1016/j.ijsolstr.2015.11.002
[29]. S. T. Nguyen, Propagation de fissures et endommagement par microfissures des matériaux viscoélastiques linéaires non vieillissants, Université Paris-Est, 2010, PhD dissertation.
[30]. S. Ignoul, L. Schueremans, J. Tack, L. Swinnen, S. Feytons, L. Binda, D. V. Gemert, K. V. Balen, Creep behavior of masonry structures - failure prediction based on a rheological model and laboratory tests, Proceedings of the 5th int. seminar on Structural Analysis of Historical Constructions, 2006 Nov 6-8, Macmillan India, Lirias, 2006, 913-920.

Tải xuống

Chưa có dữ liệu thống kê