Development of an artificial neural network based-prediction model for bond strength of FRP bars in concrete

  • Huynh Phuong Nam

    The University of Danang – University of Science and Technology, No 54 Nguyen Luong Bang Street, Danang, Vietnam
  • Tran Le Anh Duc

    The University of Danang – University of Science and Technology, No 54 Nguyen Luong Bang Street, Danang, Vietnam
  • Phan Hoang Nam

    The University of Danang – University of Science and Technology, No 54 Nguyen Luong Bang Street, Danang, Vietnam
  • Nguyen Minh Hai

    The University of Danang – University of Science and Technology, No 54 Nguyen Luong Bang Street, Danang, Vietnam
  • Phan Da Thao

    The College of Technology, Economics and Irrigation Central, No 14 Nguyen Tat Thanh Street, Hoian, Quangnam, Vietnam
Email: phnam@dut.udn.vn
Từ khóa: fiber-reinforced polymer bar; pull-out test; bond strength; ANN model; machine learning technique

Tóm tắt

Fiber-reinforced polymer (FRP) bars have garnered increasing attention in recent years due to their superior corrosion resistance, offering a potential solution to the significant drawback of steel corrosion in concrete. For the widespread utilization of FRP bars in concrete structures, determining the bond strength between FRP bars and concrete is a crucial topic. This study seeks to develop a prediction model to estimate the bond strength of FRP bars in concrete, utilizing an extended dataset from 1010 pull-out tests. Initially, the study evaluates the applicability of several bond strength formulas from existing codes. Subsequently, two prediction models, namely a multivariate linear regression model and an artificial neural network (ANN) model, are introduced for estimating the bond strength of FRP bars in concrete. The results indicate that the correlation between the evaluation values of existing formulas and the experimental value is very low. This is because these formulas have not yet been updated to encompass the expanded usage scopes of FRP bars with various surface processing methods and types of concrete. While the multivariate linear regression model outperforms these formulas, its accuracy is still relatively low; in contrast, the ANN demonstrates superior performance, achieving an R^2 value for both the validation and test set of more than 0.92. The findings highlight that, when considering a broader range of applications, the ANN serves as a robust tool for accurately predicting the bond strength of FRP bars in concrete, in comparison to traditional formulas and linear regression models. This assessment approach provides engineers with a convenient, high-precision tool for designs utilizing various forms of FRP bars and diverse types of concrete in practical design scenarios

Tài liệu tham khảo

[1]. X. Zou, H. Lin, P. Feng, Y. Bao, J. Wang, A review on FRP-concrete hybrid sections for bridge applications, Composite Structures, 262 (2021) 113336. https://doi.org/10.1016/j.compstruct.2020.113336.
[2]. Y. M. Amran, R. Alyousef, R. S. Rashid, H. Alabduljabbar, C. C. Hung, Properties and applications of FRP in strengthening RC structures: A review, Structures, 16 (2018) 208-238. https://doi.org/10.1016/j.istruc.2018.09.008
[3]. S. M. Hosseini, M. Yekrangnia, A. V. Oskouei, Effect of spiral transverse bars on structural behavior of concrete shear walls reinforced with GFRP bars, Journal of Building Engineering, 55 (2022) 104706. https://doi.org/10.1016/j.jobe.2022.104706
[4]. H. A. Hasan, M. N. Sheikh, M. N. Hadi, Maximum axial load carrying capacity of Fibre Reinforced-Polymer (FRP) bar reinforced concrete columns under axial compression, Structures, 19 (2019) 227-233. https://doi.org/10.1016/j.istruc.2018.12.012
[5]. X. Hu, J. Xiao, K. Zhang, Q. Zhang, The state-of-the-art study on durability of FRP reinforced concrete with seawater and sea sand, Journal of Building Engineering, 51 (2022) 104294. https://doi.org/10.1016/j.jobe.2022.104294
[6]. A. Confrere, L. Michel, E. Ferrier, G. Chanvillard, Experimental behaviour and deflection of low‐strength concrete beams reinforced with FRP bars, Structural Concrete, 17 (2016) 858-874. https://doi.org/10.1002/suco.201500046
[7]. F. Aslani, S. Nejadi, Bond behavior of reinforcement in conventional and self-compacting concrete, Advances in Structural Engineering, 15 (2012) 2033-2051. https://doi.org/10.1260/1369-4332.15.12.2033
[8]. X. Lin, Y. Zhang, Evaluation of bond stress-slip models for FRP reinforcing bars in concrete, Composite Structures, 107 (2014) 131-141. https://doi.org/10.1016/j.compstruct.2013.07.037
[9]. R. J. Hamad, M. M. Johari, R. H. Haddad, Mechanical properties and bond characteristics of different fiber reinforced polymer rebars at elevated temperatures, Construction and Building Materials, 142 (2017) 521-535. https://doi.org/10.1016/j.conbuildmat.2017.03.113
[10]. L. Xiao, S. Dai, Q. Jin, S. Peng, Bond performance of GFRP bars embedded in steel‐PVA hybrid fiber concrete subjected to repeated loading, Structural Concrete, 24 (2023) 1597-1611. https://doi.org/10.1002/suco.202100607
[11]. A. Nanni, A. De Luca, H. J. Zadeh, Reinforced concrete with FRP bars: Mechanics and design. CRC press, 2014.
[12]. R. Sun, R. Perera, J. Gu, Y. Wang, A simplified approach for evaluating the flexural response of concrete beams reinforced with FRP bars, Frontiers in Materials, 8 (2021) 765058. https://doi.org/10.3389/fmats.2021.765058
[13]. Q. Li, M. Fu, B. Xie, Analyzing the bond behavior of Fiber-Reinforced Polymer (FRP) bars embedded in Engineered Cementitious Composites (ECCs) with the nonlocal continuum rod model, Mathematical Problems in Engineering, 2020 (2020) 1-12. https://doi.org/10.1155/2020/1710364
[14]. M. H. Omrani, M. Dehestani, H. Yousefpour, Flexural behavior of lightweight concrete beams reinforced with GFRP bars and prestressed with steel strands, Structural Concrete, 22 (2021) 69-80. https://doi.org/10.1002/suco.201900342
[15]. R. Okelo, R. L. Yuan, Bond strength of fiber reinforced polymer rebars in normal strength concrete, Journal of Composites for Construction, 9 (2005) 203-213. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:3(203)
[16]. J. Y. Lee, T. Y. Kim, T. J. Kim, C. K. Yi, J. S. Park, Y. C. You, Y. H. Park, Interfacial bond strength of glass fiber reinforced polymer bars in high-strength concrete, Composites Part B: Engineering, 39 (2008) 258-270. https://doi.org/10.1016/j.compositesb.2007.03.008
[17]. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute, USA, 2006.
[18]. Design and Construction of Building Components with Fibre-Reinforced Polymers, Canadian Standards Association, Canada, 2012.
[19]. Canadian Highway Bridge Design Code, Canadian Standards Association, Canada, 2006.
[20]. A. Machida, T. Uomoto, Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials, Japan Society of Civil Engineers, Japan, 1997.
[21]. M. Code, First Complete Draft-Volume 2: Model Code; Fédération Internationale du Béton (FIB), Switzerland, 2010.
[22]. N. C. Concha, Neural network model for bond strength of FRP bars in concrete, Structures, 41 (2022) 306-317. https://doi.org/10.1016/j.istruc.2022.04.088
[23]. B. Basaran, I. Kalkan, E. Bergil, E. Erdal, Estimation of the FRP-concrete bond strength with code formulations and machine learning algorithms, Composite Structures, 268 (2021) 113972. https://doi.org/10.1016/j.compstruct.2021.113972
[24]. H. Kazemi, M. Yekrangnia, M. Shakiba, M. Bazli, A. Vatani Oskouei, Bond durability between anchored GFRP bar and seawater concrete under offshore environmental conditions, Materials and Structures, 56 (2023) 64. https://doi.org/10.1617/s11527-023-02153-5
[25]. E. Toumpanaki, J. M. Lees, G. P. Terrasi, Bond durability of carbon fiber–reinforced polymer tendons embedded in high-strength concrete, Journal of Composites for Construction, 22 (2018) 04018032. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000870
[26]. X. Liu, X. Wang, K. Xie, Z. Wu, F. Li, Bond behavior of basalt fiber-reinforced polymer bars embedded in concrete under mono-tensile and cyclic loads, International Journal of Concrete Structures and Materials, 14 (2020) 1-15. https://doi.org/10.1186/s40069-020-0394-4
[27]. M. Ekenel, Fiber Reinforced Polymer Reinforcement for Concrete Members-ACI Committee 400 is taking the next step toward building code compliance, Concrete International, 43 (2021) 52-56.
[28]. A. Parghi, M. S. Alam, A review on the application of sprayed-FRP composites for strengthening of concrete and masonry structures in the construction sector, Composite Structures, 187 (2018) 518-534. https://doi.org/10.1016/j.compstruct.2017.11.085
[29]. Y. Liu, Z. H. Tao, Z. H. Hao, L. Lu, H. M. Yang, W. J. Cai, S. Guan, Experimental study on mechanical properties of novel FRP bars with hoop winding layer, Advances in Materials Science and Engineering, (2021) 1-18. https://doi.org/10.1155/2021/9554687
[30]. M. Baena, L. Torres, A. Turon, C. Barris, Experimental study of bond behaviour between concrete and FRP bars using a pull-out test, Composites Part B: Engineering, 40 (2009) 784-797. https://doi.org/10.1016/j.compositesb.2009.07.003
[31]. B. Basaran, I. Kalkan, Development length and bond strength equations for FRP bars embedded in concrete, Composite Structures, 251 (2020) 112662. https://doi.org/10.1016/j.compstruct.2020.112662.
[32]. A. Katz, Bond mechanism of FRP rebars to concrete, Materials and Structures, 32 (1999) 761-768. https://doi.org/10.1007/BF02905073
[33]. A. Rolland, M. Quiertant, A. Khadour, S. Chataigner, K. Benzarti, P. Argoul, Experimental investigations on the bond behavior between concrete and FRP reinforcing bars, Construction and building Materials, 173 (2018) 136-148. https://doi.org/10.1016/j.conbuildmat.2018.03.169
[34]. S. Islam, H. M. Afefy, K. Sennah, H. Azimi, Bond characteristics of straight-and headed-end, ribbed-surface, GFRP bars embedded in high-strength concrete, Construction and Building Materials, 83 (2015) 283-298. https://doi.org/10.1016/j.conbuildmat.2015.03.025
[35]. Z. Achillides, K. Pilakoutas, Bond behavior of fiber reinforced polymer bars under direct pullout conditions, Journal of Composites for construction, 8 (2004) 173-181. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(173)
[36]. L. J. Malvar, J. Cox, K. B. Cochran, Bond between carbon fiber reinforced polymer bars and concrete. I: Experimental study, Journal of Composites for Construction, 7 (2003) 154-163. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:2(154)
[37]. A. Belarbi, H. Wang, Bond durability of FRP bars embedded in fiber-reinforced concrete, Journal of Composites for Construction, 16 (2012) 371-380. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000270
[38]. Z. Dong, G. Wu, B. Xu, X. Wang, L. Taerwe, Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction, Materials & Design, 92 (2016) 552-562. https://doi.org/10.1016/j.matdes.2015.12.066
[39]. W. Wei, F. Liu, Z. Xiong, Z. Lu, L. Li, Bond performance between fibre-reinforced polymer bars and concrete under pull-out tests, Construction and Building Materials, 227 (2019) 116803.
[40]. W. Tang, T. Lo, R. V. Balendran, Bond performance of polystyrene aggregate concrete (PAC) reinforced with glass-fibre-reinforced polymer (GFRP) bars, Building and Environment, 43 (2008) 98-107. https://doi.org/10.1016/j.buildenv.2006.11.030
[41]. A. Abbasi, P. J. Hogg, Temperature and environmental effects on glass fibre rebar: modulus, strength and interfacial bond strength with concrete, Composites Part B: Engineering, 36 (2005) 394-404. https://doi.org/10.1016/j.compositesb.2005.01.006
[42]. B. Tighiouart, B. Benmokrane, D. Gao, Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars, Construction and Building Materials, 12 (1998) 453-462. https://doi.org/10.1016/S0950-0618(98)00027-0
[43]. M. Bazli, H. Ashrafi, A. V. Oskouei, Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments, Construction and Building Materials, 148 (2017) 429-443. https://doi.org/10.1016/j.conbuildmat.2017.05.046
[44]. Y. Ding, X. Ning, Y. Zhang, F. P. Torgal, J. Aguiar, Fibres for enhancing of the bond capacity between GFRP rebar and concrete, Construction and Building Materials, 51 (2014) 303-312. https://doi.org/10.1016/j.conbuildmat.2013.10.089
[45]. J. F. Davalos, Y. Chen, I. Ray, Effect of FRP bar degradation on interface bond with high strength concrete, Cement and Concrete Composites, 30 (2008) 722-730. https://doi.org/10.1016/j.cemconcomp.2008.05.006
[46]. J. P. Won, C. G. Park, H. H. Kim, S. W. Lee, C. I. Jang, Effect of fibers on the bonds between FRP reinforcing bars and high-strength concrete, Composites Part B: Engineering, 39 (2008) 747-755. https://doi.org/10.1016/j.compositesb.2007.11.005
[47]. J. Zhou, X. Chen, S. Chen, Effect of different environments on bond strength of glass fiber-reinforced polymer and steel reinforcing bars, KSCE Journal of Civil Engineering, 16 (2012) 994-1002.
[48]. M. Robert, B. Benmokrane, Effect of aging on bond of GFRP bars embedded in concrete, Cement and Concrete Composites, 32 (2010) 461-467. https://doi.org/10.1007/s12205-012-1462-3
[49]. Q. Hao, Y. Wang, Z. He, J. Ou, Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete, Construction and Building Materials, 23 (2009) 865-871. https://doi.org/10.1016/j.conbuildmat.2008.04.011
[50]. A. Godat, S. Aldaweela, H. Aljaberi, N. Al Tamimi, E. Alghafri, Bond strength of FRP bars in recycled-aggregate concrete, Construction and Building Materials, 267 (2021) 120919. https://doi.org/10.1016/j.conbuildmat.2020.120919
[51]. M. Antonietta Aiello, M. Leone, M. Pecce, Bond performances of FRP rebars-reinforced concrete, Journal of Materials in Civil Engineering, 19 (2007) 205-213. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:3(205)
[52]. K. Hossain, D. Ametrano, M. Lachemi, Bond strength of standard and high-modulus GFRP bars in high-strength concrete, Journal of Materials in Civil Engineering, 26 (2014) 449-456. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000758
[53]. B. Kim, J. H. Doh, C. K. Yi, J. Y. Lee, Effects of structural fibers on bonding mechanism changes in interface between GFRP bar and concrete, Composites Part B: Engineering, 45 (2013) 768-779. https://doi.org/10.1016/j.compositesb.2012.09.039
[54]. I. Vilanova, M. Baena, L. Torres, C. Barris, Experimental study of bond-slip of GFRP bars in concrete under sustained loads, Composites Part B: Engineering, 74 (2015) 42-52. https://doi.org/10.1016/j.compositesb.2015.01.006
[55]. F. Yan, Z. Lin, D. Zhang, Z. Gao, M. Li, Experimental study on bond durability of glass fiber reinforced polymer bars in concrete exposed to harsh environmental agents: Freeze-thaw cycles and alkaline-saline solution, Composites Part B: Engineering, 116 (2017) 406-421. https://doi.org/10.1016/j.compositesb.2016.10.083
[56]. Y. Gong, J. Song, Y. Zhang, The interfacial bond properties and model for basalt fiber reinforced polymer bar in ultra-high-performance concrete subjected monotonic and reversed cyclic loading, Journal of Building Engineering, 72 (2023) 106606. https://doi.org/10.1016/j.jobe.2023.106606
[57]. D. Tong, Y. Chi, L. Huang, Y. Zeng, M. Yu, L. Xu, Bond performance and physically explicable mathematical model of helically wound GFRP bar embedded in UHPC, Journal of Building Engineering, 69 (2023) 2352-7102. https://doi.org/10.1016/j.jobe.2023.106322
[58]. J. J. Zeng, J. J. Liao, Y. Zhuge, Y. C. Guo, J. K. Zhou, Z. H. Huang, L. Zhang, Bond behavior between GFRP bars and seawater sea-sand fiber-reinforced ultra-high strength concrete, Engineering Structures, 254 (2022) 113787. https://doi.org/10.1016/j.engstruct.2021.113787
[59]. F. Soltanzadeh, A. E. Behbahani, E. N. Pereira, Bond behavior of recycled tyre steel fiber reinforced concrete and basalt fiber-reinforced polymer bars under static and fatigue loading conditions, Journal of Building Engineering, 70 (2023) 106291. https://doi.org/10.1016/j.engstruct.2021.113787
[60]. L. Ke, L. Liang, Z. Feng, C. Li, J. Zhou, Y. Li, Bond performance of CFRP bars embedded in UHPFRC incorporating orientation and content of steel fibers, Journal of Building Engineering, 73 (2023) 106827. https://doi.org/10.1016/j.jobe.2023.106291
[61]. N. D. Lagaros, Artificial Neural Networks Applied in Civil Engineering, Applied Sciences, 13 (2023) 1131. https://doi.org/10.3390/app13021131

Tải xuống

Chưa có dữ liệu thống kê
Nhận bài
14/12/2023
Nhận bài sửa
23/04/2024
Chấp nhận đăng
15/04/2024
Xuất bản
15/05/2024
Chuyên mục
Công trình khoa học