Enhancing understanding of moisture diffusion in wood: numerical approach and diffusion parameter optimization
Email:
tuananh.nguyen@ut.edu.vn
Từ khóa:
Wood, hygroscopic, moisture diffusion, finite difference method, Simplex algorithm.
Tóm tắt
Wood, an environmentally friendly construction material, is characterized by a critical attribute that significantly influences its mechanical properties and durability: its moisture absorption behavior. This study expands upon an existing one-dimensional model to develop an innovative two-dimensional numerical framework for simulating moisture propagation within wood. Utilizing the finite difference method, this approach offers a more detailed analysis of moisture behavior in wood structures. The research adopts an inverse modeling technique, integrating a simplex optimization algorithm programmed in VBA software. This algorithm is employed to deduce diffusion parameters from the evolution of moisture content over time. Focusing on the analysis of moisture diffusion parameters, the study examines both longitudinal and transverse directions in two temperate species (Beech and Fir) and two tropical species (Moabi and Ozigo). The findings provide insightful data on the hygroscopic behavior of these woods, revealing significant distinctions between temperate and tropical species. This research offers valuable information for the application of these wood species in construction and other fields, enhancing the understanding of their moisture-related properties.Tài liệu tham khảo
[1]. Z. Perkowski, J. Świrska-Perkowska, M. Gajda, Comparison of moisture diffusion coefficients for pine, oak and linden wood, J. Build. Phys., 41 (2016) 135-161. https://doi.org/10.1177/1744259116673967.
[2]. M. Shirmohammadi, Study of the hygroscopic properties of three Australian wood species used as solid wood and composite products, Eur. J. Wood Wood Prod., 81 (2023) 1495–1512. https://doi.org/10.1007/s00107-023-01966-z.
[3]. F. S. John, Wood--influence of moisture on physical properties, 1st ed., Virginia Polytechnic Institute and State University, Department of Wood Science and Forest Products, 1995.
[4]. S. Merakeb, Modeling of Wooden Structures in a Variable Environment, PhD Thesis, University of Limoges, 2006 (in French).
[5]. N. T. Anh, Experimental and Numerical Approaches for the Study of Hygroscopic Transfers in Wood, PhD Thesis, University of Limoges, 2014 (in French).
[6]. T. A. Nguyen et al., Numerical and experimental approaches to characterize the mass transfer process in wood elements, Wood Sci. Technol., 51 (2017) 811-830. https://doi.org/10.1007/s00226-017-0898-5.
[7]. W. Hafsa et al., Assessment of moisture content profile in Douglas-fir wood using electrical resistivity-based tomography, Constr. Build. Mater., 366 (2023) 130-193. https://doi.org/10.1016/j.conbuildmat.2022.130193.
[8]. J. W. Westwater, H. G. Drickamer, The Mathematics of Diffusion, J. Am. Chem. Soc., 79 (1957) 1267–1267. https://doi.org/10.1021/ja01562a070.
[9]. B. Franke et al., Moisture diffusion in wood – Experimental and numerical investigations, World Conference on Timber Engineering - WCTE, Vienna, 2016.
[10]. S. Avramidis, Bound water migration in wood, Advances in the drying of wood COST E15, 2018.
[11]. C. Tremblay, A. Cloutier, Y. Fortin, Experimental determination of the convective heat and mass transfer coefficients for wood drying, Wood Sci. Technol., 34 (2000) 253–276. https://doi.org/10.1007/s002260000045.
[12]. W. T. Simpson, J. Y. Liu, Dependence of the water vapor diffusion coefficient of aspen (Populus spec.) on moisture content, Wood Sci. Technol., 26 (1991) 9-21. https://doi.org/10.1007/BF00225688.
[13]. B. Slováčková et al., Diffusion coefficient and equilibrium moisture content of different wood species degraded with Trametes versicolor, BioResources, 16 (2021) 2570-2588. http://dx.doi.org/10.15376/biores.16.2.2570-2588.
[14]. A. Kucharczyk, K. Pawlik, Modelling and Experimental Study of Moisture Transport in Wood, Taking into Account Diffusion and the Accompanying Adsorption of Water vapor by Cell Walls, Materials, 14 (2021). https://doi.org/10.3390/ma14010017.
[15]. L. Cai, S. Avramidis, A study on the separation of diffusion and surface emission coefficients in wood, Dry. Technol., 15 (1997) 1457–1473. https://doi.org/10.1080/07373939708917303.
[16]. S. Avramidis, J. Siau, An investigation of the external and internal resistance to moisture diffusion in wood, Wood Sci. Technol., 21 (1987) 249–256. https://doi.org/10.1007/BF00351396.
[17]. M. Vaziri et al., Water-vapour sorption of welded bond-line of European beech and Scots pine, Holzforschung, 77 (2023) 500-514. https://doi.org/10.1515/hf-2022-0012.
[18]. N. M. Boussougou, Contribution to the Adaptation of Eurocode 5 for Tropical Species in Their Environment, PhD Thesis, University of Limoges, 2015 (in French).
[19]. N. T. Anh, N. T. Thuy, Phương pháp ngược xác định các hệ số khuếch tán ẩm của vật liệu gỗ bằng thuật toán tối ưu Simplex, J. Transp. Sci. Technol., 11 (2022) 54–61. https://www.doi.org/10.55228/JTST.11(3).54-61.
[20]. W. T. Simpson, Determination and use of moisture diffusion coefficient to characterize drying of northern red oak (Quercus rubra), Wood Sci. Technol., 27 (1993) 409–420. https://doi.org/10.1007/BF00193863.
[21]. N. T. Anh, Modelisation of moisture diffusion in wood by finite difference method, J. Transp. Sci. Technol., 11 (2022) 90–96. https://www.doi.org/10.55228/JTST.11(2).90-96.
[22]. J. A. Nelder, R. Mead, A Simplex Method for Function Minimization, Comput J, 7 (1965) 308–313.
[23]. D. M. Olsson, L. S. Nelson, The Nelder-Mead Simplex Procedure for Function Minimization, Technometrics, 17 (1975) 45–51. https://doi.org/10.2307/1267998.
[2]. M. Shirmohammadi, Study of the hygroscopic properties of three Australian wood species used as solid wood and composite products, Eur. J. Wood Wood Prod., 81 (2023) 1495–1512. https://doi.org/10.1007/s00107-023-01966-z.
[3]. F. S. John, Wood--influence of moisture on physical properties, 1st ed., Virginia Polytechnic Institute and State University, Department of Wood Science and Forest Products, 1995.
[4]. S. Merakeb, Modeling of Wooden Structures in a Variable Environment, PhD Thesis, University of Limoges, 2006 (in French).
[5]. N. T. Anh, Experimental and Numerical Approaches for the Study of Hygroscopic Transfers in Wood, PhD Thesis, University of Limoges, 2014 (in French).
[6]. T. A. Nguyen et al., Numerical and experimental approaches to characterize the mass transfer process in wood elements, Wood Sci. Technol., 51 (2017) 811-830. https://doi.org/10.1007/s00226-017-0898-5.
[7]. W. Hafsa et al., Assessment of moisture content profile in Douglas-fir wood using electrical resistivity-based tomography, Constr. Build. Mater., 366 (2023) 130-193. https://doi.org/10.1016/j.conbuildmat.2022.130193.
[8]. J. W. Westwater, H. G. Drickamer, The Mathematics of Diffusion, J. Am. Chem. Soc., 79 (1957) 1267–1267. https://doi.org/10.1021/ja01562a070.
[9]. B. Franke et al., Moisture diffusion in wood – Experimental and numerical investigations, World Conference on Timber Engineering - WCTE, Vienna, 2016.
[10]. S. Avramidis, Bound water migration in wood, Advances in the drying of wood COST E15, 2018.
[11]. C. Tremblay, A. Cloutier, Y. Fortin, Experimental determination of the convective heat and mass transfer coefficients for wood drying, Wood Sci. Technol., 34 (2000) 253–276. https://doi.org/10.1007/s002260000045.
[12]. W. T. Simpson, J. Y. Liu, Dependence of the water vapor diffusion coefficient of aspen (Populus spec.) on moisture content, Wood Sci. Technol., 26 (1991) 9-21. https://doi.org/10.1007/BF00225688.
[13]. B. Slováčková et al., Diffusion coefficient and equilibrium moisture content of different wood species degraded with Trametes versicolor, BioResources, 16 (2021) 2570-2588. http://dx.doi.org/10.15376/biores.16.2.2570-2588.
[14]. A. Kucharczyk, K. Pawlik, Modelling and Experimental Study of Moisture Transport in Wood, Taking into Account Diffusion and the Accompanying Adsorption of Water vapor by Cell Walls, Materials, 14 (2021). https://doi.org/10.3390/ma14010017.
[15]. L. Cai, S. Avramidis, A study on the separation of diffusion and surface emission coefficients in wood, Dry. Technol., 15 (1997) 1457–1473. https://doi.org/10.1080/07373939708917303.
[16]. S. Avramidis, J. Siau, An investigation of the external and internal resistance to moisture diffusion in wood, Wood Sci. Technol., 21 (1987) 249–256. https://doi.org/10.1007/BF00351396.
[17]. M. Vaziri et al., Water-vapour sorption of welded bond-line of European beech and Scots pine, Holzforschung, 77 (2023) 500-514. https://doi.org/10.1515/hf-2022-0012.
[18]. N. M. Boussougou, Contribution to the Adaptation of Eurocode 5 for Tropical Species in Their Environment, PhD Thesis, University of Limoges, 2015 (in French).
[19]. N. T. Anh, N. T. Thuy, Phương pháp ngược xác định các hệ số khuếch tán ẩm của vật liệu gỗ bằng thuật toán tối ưu Simplex, J. Transp. Sci. Technol., 11 (2022) 54–61. https://www.doi.org/10.55228/JTST.11(3).54-61.
[20]. W. T. Simpson, Determination and use of moisture diffusion coefficient to characterize drying of northern red oak (Quercus rubra), Wood Sci. Technol., 27 (1993) 409–420. https://doi.org/10.1007/BF00193863.
[21]. N. T. Anh, Modelisation of moisture diffusion in wood by finite difference method, J. Transp. Sci. Technol., 11 (2022) 90–96. https://www.doi.org/10.55228/JTST.11(2).90-96.
[22]. J. A. Nelder, R. Mead, A Simplex Method for Function Minimization, Comput J, 7 (1965) 308–313.
[23]. D. M. Olsson, L. S. Nelson, The Nelder-Mead Simplex Procedure for Function Minimization, Technometrics, 17 (1975) 45–51. https://doi.org/10.2307/1267998.
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
07/08/2023
Nhận bài sửa
21/09/2023
Chấp nhận đăng
09/01/2024
Xuất bản
15/01/2024
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Nguyen Tuan, A. (1705251600). Enhancing understanding of moisture diffusion in wood: numerical approach and diffusion parameter optimization. Tạp Chí Khoa Học Giao Thông Vận Tải, 75(1), 1183-1197. https://doi.org/10.47869/tcsj.75.1.7
Số lần xem tóm tắt
130
Số lần xem bài báo
83