Influence of material and geometry defects on local buckling resistance of FRP columns

  • Thuy Nguyen Tien

    Ho Chi Minh city University of Transport, No 2, Vo Oanh Street, 25 Ward, Binh Thanh District, Ho Chi Minh City, Vietnam
    Intitute of Research and Application for Tropical Building Materials, No 55 Giai Phong Street, Hanoi, Vietnam
Email: thuy.nguyen@ut.edu.vn
Keywords: local buckling resistance, PFRP column, nonlinear analysis, geometric imperfection, material defects

Abstract

Fiber-reinforced Polymer materials manufactured by the pultrusion process are increasingly being widely used in the construction industry due to their reasonable cost, high strength, lightweight, corrosion resistance, and convenient for installation. Due to its low modulus of elasticity and material is linear until failure, the design of PFRP structures are governed by instabilities rather than by strengths. Local instability of the column occurs when the compressive plates of the structure undergo local buckling in a sinusoidal pattern. This study analyzes the local buckling and post-buckling resistance of a PFRP column, taken into account defects of material properties and geometric imperfections. The results show that geometric imperfections have significant influence on the local buckling resistance and greatly reduce the post-buckling resistance of the column. A comparison between nonlinear buckling analysis and theoretical calculations by Kollár, as well as the experimental values, demonstrates that Kollár's theoretical formula is suitable for determining local buckling resistance of PFRP column. The author proposes to use this formula in the design calculations for load-bearing PFRP columns.

References

[1]. Tấm gia cường trong dầm bê tông cốt thép, https://www.structuremag.org/?p=8643 , Truy cập ngày 1 tháng 6 năm 2023.
[2]. Thanh GFRP trong công trình cầu, https://www.owenscorning.com/en-us/composites/applications/bridge-construction , Truy cập ngày 1 tháng 6 năm 2023.
[3]. L. C. Bank, Composites for Construction. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. https://doi.org/10.1002/9780470121429
[4]. J. T. Mottram, Determination of critical load for flange buckling in concentrically loaded pultruded columns, Compos B Eng, 35 (2004) 35–47. https://doi.org/10.1016/j.compositesb.2003.08.006.
[5]. T. T. Nguyen, A. Nguyen Tuan, Thí nghiệm xác định modun đàn hồi theo phương dọc và hệ số nở ngang của vật liệu polyme gia cường sợi thủy tinh (GFRP), Transport and Communications Science Journal, 74 (2023) 147–159.
[6]. W. P. Stoddard, Lateral-torsional buckling behavior of polymer composite I-shaped members., Georgia Institute of Technology, USA, 1997.
[7]. E. E. Lundquist, E. Z. Stowell, and E. H. Schuette, Principles of moment distribution applied to stability of structures composed of bars or plates, 1943.
[8]. T. C. on P. of S. P. S. of the S. P. R. C. of the T. C. on R. of ASCE, Structural Plastics Selection Manual, American Society of Civil Engineers, 1985.
[9]. J. L. Clarke, Structural design of polymer composites: Eurocomp design code and background document. CRC Press, 2003.
[10]. F. Bleich, Buckling strength of metal structures, Mc Graw-Hill Book Company, Inc., Cardnr. 51-12588, 1952.
[11]. L. P. Kollár, Local Buckling of Fiber Reinforced Plastic Composite Structural Members with Open and Closed Cross Sections, Journal of Structural Engineering, 129 (2003) 1503–1513. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:11(1503)
[12]. P. Qiao, L. Shan, Explicit local buckling analysis and design of fiber–reinforced plastic composite structural shapes, Compos Struct, 70 (2005) 468–483, https://doi.org/10.1016/J.COMPSTRUCT.2004.09.005
[13]. ASCE, Pre-standard for load and resistance factor design (LRFD) of pultruded fiber reinforced polymer (FRP) structures, Arlington,VA,USA, 2010.
[14]. T.-T. Nguyen, Local buckling resistance of Pultruded FRP columns: Theoretical predictions vs. Experimental study, Journal of Transportation Science and Technology, 12 (2023), https://doi.org/10.55228/JTST.12(1).33-43
[15]. M. E. Tuttle, M. E. Tuttle, Structural Analysis of Polymeric Composite Materials, Chapman and Hall/CRC, 2012. https://doi.org/10.1201/b13672.
[16]. P. Qiao, G. Zou, and J. F. Davalos, Flexural–torsional buckling of fiber-reinforced plastic composite cantilever I-beams, Compos Struct, 60 (2003) 205–217, https://doi.org/10.1016/S0263-8223(02)00304-5
[17]. T. T. Nguyen, S. Selvaraj, T.-M. Chan, J. T. Mottram, Influence of Combined Imperfections on Lateral-torsional Buckling Behavior of Pultruded FRP Beams, Compos Struct, 2002, p.p 116385, https://doi.org/10.1016/J.COMPSTRUCT.2022.116385.
[18]. L. Shan, P. Qiao, Flexural–torsional buckling of fiber-reinforced plastic composite open channel beams, Compos Struct, 68 (2005) 211–224. https://doi.org/10.1016/j.compstruct.2004.03.015
[19]. E. Riks, An incremental approach to the solution of snapping and buckling problems, Int J Solids Struct, 15 (1979) 529–551. https://doi.org/10.1016/0020-7683(79)90081-7
[20]. M. A. Crisfield, A fast incremental/iterative solution procedure that handles ‘snap-through,’ Comput Struct, 13 (1981) 55–62, https://doi.org/10.1016/0045-7949(81)90108-5
[21]. T. T. Nguyen, Ứng xử mất ổn định cục bộ của kết cấu composite có tính đến độ nhảy của khiếm khuyết hình học và vật liệu, Thuyết minh đề tài KHDN2301 - Đại học Giao thông vận tải TP Hồ Chí MInh, 2023.
[22]. B. Åesson, Plate Buckling in Bridges and Other Structures, CRC Press, 2014. https://doi.org/10.1201/9781482266030

Downloads

Download data is not yet available.
Received
01/06/2023
Revised
07/06/2023
Accepted
14/06/2023
Published
15/06/2023
Type
Research Article
How to Cite
Nguyễn Tiến, T. (1686762000). Influence of material and geometry defects on local buckling resistance of FRP columns. Transport and Communications Science Journal, 74(5), 611-626. https://doi.org/10.47869/tcsj.74.5.5
Abstract Views
63
Total Galley Views
50