Hydro-mechanical-damage model for the secondary creep of fiber reinforced mortar at high stress-to-strength ratio

  • Pham Duc Tho

    Geotechnical Engineering, Construction Materials and Sustainability – GCMS, Hanoi University of Mining and Geology, Hanoi, Viet Nam
  • Luca Sorelli

    Laval University, Quebec, Canada
Email: phamductho@humg.edu.vn
Từ khóa: Secondary creep at high stress, damage, adsorption isotherms, hydro-mechanical-damage, microcracking, fiber reinforced concretes.

Tóm tắt

Recent works have showed that the secondary creep of concrete under sustained high load level of load-to-strength ratio is likely due to a strong coupling between damage and drying shrinkage, which locally occurs in the fracture process zone. The scope of this work is to develop a simplified damage-poromechanical model for the secondary creep of concrete, which directly accounts for such coupling. It was simply assumed that microcracking affects the distribution of the moisture content by scaling the adsorption isotherm with damage. The proposed hydro-mechanical-damage model couplings has been implemented into a discrete lattice method based on dually coupled conduit elements and mechanical element. Notably, the drying shrinkage is accounted within the poromechanical framework of the partially saturated media. The hydro-mechanical-damage model can engender microcrack process zone which govers the secondary creep of concrete at high stress. The model has been validated on 2D experiments of secondary creep on FRC which considers the effect of water-to-cement ratio and aggregate inclusion Finally, the model is validated against experimental results on secondary creep fiber reinforced mortar (FRM) beam considering the effect of concrete heterogeneity.

Tài liệu tham khảo

[1]. A. M. Neville, W. H. Dilger, J. J. Brooks, Creep of plain and structural concrete. Construction press, 1983.
[2]. M.-Q. Thai, B. Bary, Q.-C. He, A homogenization-enriched viscodamage model for cement-based material creep, Eng. Fract. Mech., 126 (2014) 54–72. https://doi.org/ 10.1016/j.engfracmech.2014.04.021
[3]. A. M. Neville, Role of Cement in the Creep of Mortar, J. Proc., 55 (159) 963–984. https://doi.org/10.14359/11405.
[4]. F. Roll, Long-Time Creep-Recovery of Highly Stressed Concrete Cylinders, Spec. Publ., 9 (1964) 95–114. https://doi.org/10.14359/17221
[5]. Y. Xi, Z. P. Bažant, L. Molina, H. M. Jennings, Moisture diffusion in cementitious materials Moisture capacity and diffusivity, Adv. Cem. Based Mater., 1 (1994). https://doi.org/10.1016/1065-7355(94)90034-5
[6]. Claudio Mazzotti, Marco Savoia, Nonlinear creep, Poisson’s ratio, and creep-damage interaction of concrete in compression, 99 (2002) 450-457. https://doi.org/10.14359/12323
[7]. P. Rossi, J.-L. Tailhan, F. Le Maou, L. Gaillet, E. Martin, Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission, Cem. Concr. Res., 42 (2012) 61–73. https://doi.org/10.1016/j.cemconres.2011.07.011
[8]. Z. P. Bazant, G.-H. Li, Q. Yu, G. Klein, V. Kristek, Explanation of excessive long-time deflections of collapsed record-span box girder bridge in Palau, in Proc., 8th Int. Conf. on Creep, Shrinkage and Durability of Concrete and Concrete Structures, The Maeda Engineering Foundation, Ise-Shima, Japan, pp. 1–31, 2008.
[9]. P. Rossi, P. Acker, A new approach to the basic creep and relaxation of concrete, Cem. Concr. Res., 18 (1988) 799-803. https://doi.org/10.1016/0008-8846(88)90105-6
[10]. P. Rossi, C. Boulay, J.-L. Tailhan, E. Martin, D. Desnoyers, Macrocrack propagation in concrete specimens under sustained loading: Study of the physical mechanisms, Cem. Concr. Res., 63 (2014) 98–104. https://doi.org/10.1016/j.cemconres.2014.05.006
[11]. D. Daviau-Desnoyers, J.-P. Charron, B. Massicotte, P. Rossi, J.-L. Tailhan, Characterization of macrocrack propagation under sustained loading in steel fibre reinforced concrete, Mater. Struct., 49 (2015) 969–982. https://doi.org/10.1617/s11527-015-0552-3
[12]. T. Pham Duc, T. Tran Manh, T. Dang Trung, N. Vu Minh, N. Vu Minh, S. Luca, Experimental investigation of the secondary creep of fiber reinforced concrete at high stress: Macroscopic measurement and digital image correlation, Journal of Science and Technology in Civil Engineering, 16 (2022) 19–28.
[13]. Z. P. Bazant, S. Prasannan, Solidification Theory for Concrete Creep. I: Formulation, J. Eng. Mech., 115 (1989) 1691–1703. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1691)
[14]. M. Fernandez Ruiz, A. Muttoni, P. G. Gambarova, Relationship between nonlinear creep and cracking of concrete under uniaxial compression, J. Adv. Concr. Technol., 5 (2007) 383–393.
[15]. Z. P. Bazant, Y. Xiang, Crack growth and lifetime of concrete under long time loading, J. Eng. Mech., 123 (1997) 350–358.
[16]. C. Mazzotti, M. Savoia, Nonlinear creep damage model for concrete under uniaxial compression, J. Eng. Mech., 129 (2003) 1065–1075.
[17]. N. Reviron, F. Benboudjema, J. M. Torrenti, G. Nahas, A. Millard, Coupling between creep and cracking in tension, in 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Italie, 2007.
[18]. D. Daviau-Desnoyers, Caractérisation et modélisation de l’évolution de la fissuration des bétons renforcés de fibres sous charge soutenue, Université Paris-Est, 2015.
[19]. J.-L. Tailhan, P. Rossi, D. Daviau-Desnoyers, Probabilistic numerical modelling of cracking in steel fibre reinforced concretes (SFRC) structures, Cem. Concr. Compos., 55 (2015) 315–321.
[20]. P. Rossi and S. Richer, Numerical modelling of concrete cracking based on a stochastic approach, Mater. Struct., 20 (1987) 334–337.
[21]. T. Pham Duc, T. Tran Manh, T. Dang Trung, N. Vu Minh, N. Vu Minh, S. Luca, Experimental investigation of the secondary creep of fiber reinforced concrete at high stress: Macroscopic measurement and digital image correlation, Journal of Science and Technology in Civil Engineering, 16 (2022) 19–28.
[22]. D. Daviau-Desnoyers, J.-P. Charron, B. Massicotte, P. Rossi, J.-L. Tailhan, Influence of Reinforcement Type on Macrocrack Propagation under Sustained Loading in Steel Fibre Reinforced Concrete, Struct. Concr., 17 (2016) 736-746, https://doi.org/10.1002/suco.201500069
[23]. D. T. Pham, L. Sorelli, M. Fafard, M.-N. Vu, Hydromechanical couplings of reinforced tensioned members of steel fiber reinforced concrete by dual lattice model, Int. J. Numer. Anal. Methods Geomech., 45 (2021). https://doi.org/10.1002/nag.3148
[24]. Y. Xi, Z. P. Bažant, L. Molina, H. M. Jennings, Moisture diffusion in cementitious materials Moisture capacity and diffusivity, Adv. Cem. Based Mater., 1 (1994) 258–266. https://doi.org/10.1016/1065-7355(94)90034-5
[25]. Z. P. Bažant, L. J. Najjar, Nonlinear water diffusion in nonsaturated concrete, Matér. Constr., 5 (1972) 3–20. https://doi.org/10.1007/BF02479073
[26]. P. Grassl, A lattice approach to model flow in cracked concrete, Cem. Concr. Compos., 31 (2009) 454–460. https://doi.org/10.1016/j.cemconcomp.2009.05.001
[27]. P. Grassl, A lattice approach to model flow in cracked concrete, Cem. Concr. Compos., 31 (2009) 454–460.
[28]. S. Brunauer, P. H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
[29]. H. Klopfer, Water Transport in Solids by Diffusion, Bauverlag GmbH Wiesb. Berl., 1974.
[30]. Hartwig M.Kunzel, Similtaneous Heat and Moisture Transport in Building Component, Fraunhofer IRB Verl. Suttgart, 1995.
[31]. Van Genuchten, A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Science Society of America, 44 (1980) 892-898.
[32]. Hartwig M.Kunzel, Similtaneous Heat Moisture Transport in Building Component, Fraunhofer IRB Verl. Suttgart, 1995.

Tải xuống

Chưa có dữ liệu thống kê
Nhận bài
15/03/2023
Nhận bài sửa
01/05/2023
Chấp nhận đăng
14/05/2023
Xuất bản
15/05/2023
Chuyên mục
Công trình khoa học
Số lần xem tóm tắt
108
Số lần xem bài báo
77