Influence of the jet tilt angle on geometrical characteristics of the milled pocket on aluminum alloy Al6065
Email:
hungtkm@utc.edu.vn
Từ khóa:
Abrasive water jet machining (AWJM), Aluminum 6065, Jet tilt angle, pocket milled
Tóm tắt
The abrasive water jet (AWJ) is a non-traditional process that can be employed to machine a variety of materials that are significantly difficult to machine using conventional machining processes. This paper presents an experimental investigation conducted to evaluate the influence of the jet tilt angle, a kinematic process parameter, on the characteristics of the milled pocket as milling aluminium alloy 6065. The influences of this parameter are assessed by measuring differences in the depth of the milled pocket, the width, and the slope of the pocket wall. It is found that as the jet tilt angle decreases, it has a significant influence on characteristics of the milled pocket due to changing the material removal mechanism during the erosion process. Insight the influence of the jet tilt angle, this work paves a good fundamental for developing strategies for controlled 3D AWJ machining of complex shapes and improving the quality of the milled surfacesTài liệu tham khảo
[1] A. W. Momber, Energy transfer during the mixing of air and solid particles into a high-speed waterjet: An impact-force study, Exp. Therm. Fluid Sci., 25 (2001) 31-41. https://doi.org/10.1016/S0894-1777(01)00057-7.
[2] A. W. Momber, R. Kovacevic, Principles of Abrasive Water Jet Machining, Springer Link, 1998. https://doi.org/10.1007/978-1-4471-1572-4.
[3] S. Paul, A.M. Hoogstrate, C. Avan Luttervelt, H. J. J. kals, An experimental investigation of rectangular pocket milling with abrasive water jet, Journal of Materials Processing Technology, 73 (1988) 179-188. https://doi.org/10.1016/S0924-0136(97)00227-6.
[4] G. Fowler, Abrasive Water-jet - Controlled Depth Milling Titanium Alloys, PhD thesis (2003). http://eprints.nottingham.ac.uk/11436/1/396805.pdf
[5] A. Alberdi, A. Rivero, L. N. Lopez de Lacalle, I. Etxeberria, A. Suarez, Effect of process parameter on the kerf geometry in abrasive water jet milling, Int. J. Adv. Manuf. Technol, 51 (2010) 467-480. https://doi.org/10.1007/s00170-010-2662-y.
[6] I. Finnie, Erosion of surfaces by solid particles, Wear, 3 (1960) 87-103. https://doi.org/10.1016/0043-1648(60)90055-7.
[7] M. Hashish, The Effect of Beam Angle in Abrasive-Waterjet Machining, J. Eng. Ind., 115 (1993) 51-56. https://doi.org/10.1115/1.2901638.
[8] K. Sugiyama, K. Harada, S. Hattori, Influence of impact angle of solid particles on erosion by slurry jet, Wear, 265 (2008) 713-720. https://doi.org/10.1016/j.wear.2008.01.020
[9] J. Wang, Abrasive waterjet machining of polymer matrix composites - cutting performance, erosive process and predictive models, Int. J. Adv. Manuf. Technol., 15 (1999) 757-768. https://doi.org 10.1007/s001700050129.
[10] K. M. C. Ojmertz, Abrasive waterjet milling: An experimental investigation, in: Proceeding of the 7th American water jet conference, Washington, 58 (1993) 777-792.
[11] D. S. Srinivasu, D. A. Axinte, P. H. Shipway, J. Folkes, Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics, Int. J. Mach. Tools Manuf, 49 (2009) 1077–1088. https://doi.org/10.1016/j.ijmachtools.2009.07.007
[12] G. Fowler, P. H. Shipway, I. R. Pashby, A technical note on grit embedment following abrasive water-jet milling of a titanium alloy, J. Mater. Process. Technol., 159 (2005) 356-368. https://doi.org/10.1016/j.jmatprotec.2004.05.024.
[13] P. H. Shipway, G. Fowler, I. R. Pashby, Characteristics of the surface of a titanium alloy following milling with abrasive waterjets, Wear, 258 (2005) 123-132. https://doi.org/10.1016/j.wear.2004.04.005.
[14] N. Tamannaee, J. K. Spelt, M. Papini, Abrasive slurry jet micro-machining of edges, planar areas and transitional slopes in a talc-filled co-polymer, Precision Engineering, 43 (2016) 52-62. https://doi.org/10.1016/j.precisioneng.2015.06.009.
[15] V. H. Bui, P. Gilles, T. Sultan, G. Cohen, W. Rubio, A new cutting depth model with rapid calibration in abrasive water jet machining of titanium alloy, Int. J. Adv. Manuf. Technol., 93 (2017) 1499–1512. https://doi.org/10.1007/s00170-017-0581-x.
[16] V. H. Bui, P. Gilles, G. Cohen, W. Rubio, A modeling of elementary passes taking into account the firing angle in abrasive water jet machining of titanium alloy, in AIP Conference Proceedings, 1960 (2018). https://doi.org/10.1063/1.5034945.
[17] V. H. Bui, P. Gilles, T. Sultan, G. Cohen, W. Rubio, Adaptive speed control for waterjet milling in pocket corners, Int. J. Adv. Manuf. Technol., 103 (2019) 77-89. https://doi.org/10.1007/s00170-019-03546-z.
[18] J. G. A. Bitter, A study of erosion phenomena. Part I, Wear, 6 (1963) 5-21. https://doi.org/10.1016/0043-1648(63)90003-6.
[19] J. G. A. Bitter, A study of erosion phenomena. Part II, Wear, 6 (1963) 169-190. https://doi.org/10.1016/0043-1648(63)90073-5.
[20] D. S. Srinivasu, D. Axinte, An analytical model for top width of jet footprint in abrasive waterjet milling: A case study on SiC ceramics, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 225 (2011) 319-335. https://doi.org/10.1243/09544054JEM2101.
[21] T. Sultan, P. Gilles, G. Cohen, F. Cenac, W. Rubio, Modeling incision profile in AWJM of Titanium alloys Ti6Al4V, Mech. Ind., 17 (2016) 403-411. https://doi.org/10.1051/meca/2015102.
[2] A. W. Momber, R. Kovacevic, Principles of Abrasive Water Jet Machining, Springer Link, 1998. https://doi.org/10.1007/978-1-4471-1572-4.
[3] S. Paul, A.M. Hoogstrate, C. Avan Luttervelt, H. J. J. kals, An experimental investigation of rectangular pocket milling with abrasive water jet, Journal of Materials Processing Technology, 73 (1988) 179-188. https://doi.org/10.1016/S0924-0136(97)00227-6.
[4] G. Fowler, Abrasive Water-jet - Controlled Depth Milling Titanium Alloys, PhD thesis (2003). http://eprints.nottingham.ac.uk/11436/1/396805.pdf
[5] A. Alberdi, A. Rivero, L. N. Lopez de Lacalle, I. Etxeberria, A. Suarez, Effect of process parameter on the kerf geometry in abrasive water jet milling, Int. J. Adv. Manuf. Technol, 51 (2010) 467-480. https://doi.org/10.1007/s00170-010-2662-y.
[6] I. Finnie, Erosion of surfaces by solid particles, Wear, 3 (1960) 87-103. https://doi.org/10.1016/0043-1648(60)90055-7.
[7] M. Hashish, The Effect of Beam Angle in Abrasive-Waterjet Machining, J. Eng. Ind., 115 (1993) 51-56. https://doi.org/10.1115/1.2901638.
[8] K. Sugiyama, K. Harada, S. Hattori, Influence of impact angle of solid particles on erosion by slurry jet, Wear, 265 (2008) 713-720. https://doi.org/10.1016/j.wear.2008.01.020
[9] J. Wang, Abrasive waterjet machining of polymer matrix composites - cutting performance, erosive process and predictive models, Int. J. Adv. Manuf. Technol., 15 (1999) 757-768. https://doi.org 10.1007/s001700050129.
[10] K. M. C. Ojmertz, Abrasive waterjet milling: An experimental investigation, in: Proceeding of the 7th American water jet conference, Washington, 58 (1993) 777-792.
[11] D. S. Srinivasu, D. A. Axinte, P. H. Shipway, J. Folkes, Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics, Int. J. Mach. Tools Manuf, 49 (2009) 1077–1088. https://doi.org/10.1016/j.ijmachtools.2009.07.007
[12] G. Fowler, P. H. Shipway, I. R. Pashby, A technical note on grit embedment following abrasive water-jet milling of a titanium alloy, J. Mater. Process. Technol., 159 (2005) 356-368. https://doi.org/10.1016/j.jmatprotec.2004.05.024.
[13] P. H. Shipway, G. Fowler, I. R. Pashby, Characteristics of the surface of a titanium alloy following milling with abrasive waterjets, Wear, 258 (2005) 123-132. https://doi.org/10.1016/j.wear.2004.04.005.
[14] N. Tamannaee, J. K. Spelt, M. Papini, Abrasive slurry jet micro-machining of edges, planar areas and transitional slopes in a talc-filled co-polymer, Precision Engineering, 43 (2016) 52-62. https://doi.org/10.1016/j.precisioneng.2015.06.009.
[15] V. H. Bui, P. Gilles, T. Sultan, G. Cohen, W. Rubio, A new cutting depth model with rapid calibration in abrasive water jet machining of titanium alloy, Int. J. Adv. Manuf. Technol., 93 (2017) 1499–1512. https://doi.org/10.1007/s00170-017-0581-x.
[16] V. H. Bui, P. Gilles, G. Cohen, W. Rubio, A modeling of elementary passes taking into account the firing angle in abrasive water jet machining of titanium alloy, in AIP Conference Proceedings, 1960 (2018). https://doi.org/10.1063/1.5034945.
[17] V. H. Bui, P. Gilles, T. Sultan, G. Cohen, W. Rubio, Adaptive speed control for waterjet milling in pocket corners, Int. J. Adv. Manuf. Technol., 103 (2019) 77-89. https://doi.org/10.1007/s00170-019-03546-z.
[18] J. G. A. Bitter, A study of erosion phenomena. Part I, Wear, 6 (1963) 5-21. https://doi.org/10.1016/0043-1648(63)90003-6.
[19] J. G. A. Bitter, A study of erosion phenomena. Part II, Wear, 6 (1963) 169-190. https://doi.org/10.1016/0043-1648(63)90073-5.
[20] D. S. Srinivasu, D. Axinte, An analytical model for top width of jet footprint in abrasive waterjet milling: A case study on SiC ceramics, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 225 (2011) 319-335. https://doi.org/10.1243/09544054JEM2101.
[21] T. Sultan, P. Gilles, G. Cohen, F. Cenac, W. Rubio, Modeling incision profile in AWJM of Titanium alloys Ti6Al4V, Mech. Ind., 17 (2016) 403-411. https://doi.org/10.1051/meca/2015102.
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
21/09/2022
Nhận bài sửa
17/11/2022
Chấp nhận đăng
21/11/2022
Xuất bản
15/01/2023
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Van Hung, B., Anh Vu, N., & Quang Son, K. (1673715600). Influence of the jet tilt angle on geometrical characteristics of the milled pocket on aluminum alloy Al6065. Tạp Chí Khoa Học Giao Thông Vận Tải, 74(1), 35-46. https://doi.org/10.47869/tcsj.74.1.4
Số lần xem tóm tắt
119
Số lần xem bài báo
103