Physical, thermal, and mechanical properties of calcium aluminate cement-based refractory conerete at elevated temperature

  • Manh Tien Tran

    Department of Mechanisms of Materials, Hanoi University of Mining and Geology (HUMG), no.18, Pho Vien Street, Ha Noi, Vietnam
  • Xuan Hong Vu

    Université de LYON, Université Claude Bernard LYON 1; Laboratoire des Matériaux Composites pour la Construction LMC2, 82 bd Niels Bohr, 69622 Villeurbanne Cedex, France
  • Emmanuel Ferrier

    Université de LYON, Université Claude Bernard LYON 1; Laboratoire des Matériaux Composites pour la Construction LMC2, 82 bd Niels Bohr, 69622 Villeurbanne Cedex, France
Email: tranmanhtien@humg.edu.vn
Từ khóa: Physical property, tensile strength, compressive strength, refractory concrete, elevated temperature

Tóm tắt

In the past decade, calcium aluminate cement is widely used to manufacture refractory concrete for infrastructure works which frequently were subjected to elevated temperature thanks to the thermal stability by the high content of aluminum. This paper presents experimental results of the physical, thermal, and mechanical properties of calcium aluminate cement-based refractory concrete specimens. As experimental results, with a calcium aluminate content of about 50%, the refractory concrete provides remarkable physical, thermal, and mechanical properties. The high density and low water content were characterized for this concrete. The thermal diffusivity coefficient of refractory concrete is lower from 3 to 4 times than that of normal concrete while the conductivity is around of 1.05 (W/m.K). Furthermore, from the thermomechanical tests, the direct tensile strength and Young’s modulus of refractory concrete were identified at different temperature levels. The effect of elevated temperature on the performance of this refractory concrete was analyzed and highlighted

Tài liệu tham khảo

[1] N.-N. Brushlinsky, M. Ahrens, S.-V. Sokolov, P. Wagner, Nation Committee CTIF of Russia, Germany, and USA. [Online]. Available: https://www.ctif.org/sites/default/files/ctif_report11_world_fire_statistics_2006.pdf
[2] T.-C. Nguyen, V.-C. Mai, X.-B. Luu, Temperature distribution in concrete structure under the action of fire using Ansys software, E3S Web Conference, 91 (2019) 020-10. https://doi.org/ 10.1051/e3sconf/20199102010
[3] M.-T. Tran, X.-H. Vu, E. Ferrier, Mesoscale experimental investigation of thermomechanical behaviour of the carbon textile reinforced refractory concrete under simultaneous mechanical loading and elevated temperature, Construction and Building Materials, 217 (2019) 156–171. https://doi.org/ 10.1016/j.conbuildmat.2019.05.067
[4] M.-T. Tran, Caractérisation expérimentale et modélisation numérique du comportement thermomécanique à haute température des matériaux composites renforcés par des fibres, phdthesis, Université de Lyon, 2019.
[5] A. Baradaran-Nasiri, M. Nematzadeh, The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and aluminate cement, Construction and Building Materials, 147 (2017) 865–875. https://doi.org/10.1016/j.conbuildmat.2017.04.138
[6] W.-G. Bareiro, F. de Andrade Silva, E.-D. Sotelino, F.-M. Gomes, The influence of alumina content on the chemical and mechanical behavior of refractory concretes fired at different temperatures, Construction and Building Materials, 187 (2018) 1214–1223. https://doi.org/ 10.1016/j.conbuildmat.2018.08.065
[7] Eurocode 2, Design of concrete structures - Part 1-2: General rules - Structural fire design, 2004.
[8] T. Tlaiji, Développement et caractérisation du comportement thermomécanique des matériaux composites TRC, phdthesis, Université de Lyon, 2018.
[9] D.-A.-S. Rambo, F. de A. Silva, R.-D.-T. Filho, N. Ukrainczyk, E. Koenders, Tensile strength of a calcium-aluminate cementitious composite reinforced with basalt textile in a high-temperature environment, Cement Concrete Composite, 70 (2016) 183–193. https://doi.org/ 10.1016/j.cemconcomp.2016.04.006
[10] E. Vejmelková, D. Koňáková, L. Scheinherrová, M. Doleželová, M. Keppert, R. Černý, High temperature durability of fiber reinforced high alumina cement composites, Construction and Building Materials, 162 (2018) 881–891. https://doi.org/10.1016/j.conbuildmat.2018.01.076
[11] ISO 9001, Management de la qualité.
[12] European standard BS EN 196-2, Methods of testing cement. Chemical analysis of cement, 2005.
[13] F. De Larrard, Concrete mixture proportioning: a scientific approach. CRC Press, 2014.
[14] T. Sedran, Rheologie et rheometrie des betons. Application aux betons autonivelants. Marne-la-vallée, ENPC, 1999.
[15] European standard BS EN 413-2, Masonry cement - Part 2 : test methods, s.l.: s.n, 2005.
[16] H. Jean, Métrologie des propriétés thermophysiques des matériaux, 2017,
[17] L.-H. Nguyen, A.-L. Beaucour, S. Ortola, A. Noumowé, Experimental study on the thermal properties of lightweight aggregate concretes at different moisture contents and ambient temperatures, Construction and Building Materials, 151 (2017) 720–731. https://doi.org/10.1016/j.conbuildmat.2017.06.087
[18] T. Tlaiji, X.-H. Vu, E. Ferrier, A.-S. Larbi, Influence of different charges in cement-based matrix of textile-reinforced concrete (TRC) on its thermomechanical and thermal behaviours at different temperatures, Academy of Joint in Civil Engineering, 36 (2018) 251-254. https://doi.org/10.26168/ajce.36.1.60
[19] European standard BS EN 196-1, Methods of testing cement. Determination of strength, s.l.: s.n, 2005.
[20] M.-K. Tshimanga, Influence des paramètres de formulation sur le comportement à haute température des bétons. Phdthesis, Cergy-Pontoise, 2007.

Tải xuống

Chưa có dữ liệu thống kê
Nhận bài
20/03/2022
Nhận bài sửa
10/05/2022
Chấp nhận đăng
02/07/2022
Xuất bản
15/09/2022
Chuyên mục
Công trình khoa học