An applied grey wolf optimizer for scheduling construction projects
Email:
trangtt_ph@utc.edu.vn
Từ khóa:
project delay, project scheduling, cost overrun, Grey Wolf Optimizer, construction management, project performance.
Tóm tắt
Construction project delay has been reported as a significant cause of the project’s failure, which results in cost overrun, thereby decreasing the effectiveness of the project. Therefore, project management has placed much effort in construction works’ scheduling to enhance project performance. However, construction schedule has been commonly addressed within traditional methods that rely on project managers’ subjective experiences and manually-performed approaches, resulting in time-consuming and inaccurate decision-making. This study is thus aimed to handle these limitations. Using analyses of the Grey Wolf Optimizer (GWO) model, inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature, this study supports reducing the construction time and minimizing the additional construction cost. Furthermore, another computational tool, namely Solver-addins, is also used to verify the reliability of the result. The findings of this study will provide a valuable tool for supporting construction management to deliver projects on time, improving construction project performanceTài liệu tham khảo
[1]. C. B. Venkateswaran, R. Murugasan, Time Delay and Cost Overrun of Road over Bridge (ROB) Construction Projects in India, JCDC, 22 (2017) 79–96. https://doi.org/10.21315/jcdc2017.22.supp1.5
[2]. M. Tian, R. J. Liu, G. J. Zhang, Solving the resource-constrained multi-project scheduling problem with an improved critical chain method, Journal of the Operational Research Society, 71 (2020) 1243–1258. https://doi.org/10.1080/01605682.2019.1609883
[3]. O. Lambrechts, E. Demeulemeester, W. Herroelen, A tabu search procedure for developing robust predictive project schedules, International Journal of Production Economics, (2008) 493–508. https:// doi: 10.1016/j.ijpe.2007.02.003
[4]. M. Zhao, X. Wang, J. Yu, L. Bi, Y. Xiao, J. Zhang, Optimization of Construction Duration and Schedule Robustness Based on Hybrid Grey Wolf Optimizer with Sine Cosine Algorithm, Energies, 215 (2020). https://doi.org/10.3390/en13010215
[5]. P. Shahsavand, A. Marefat, M. Parchamijalal, Causes of delays in construction industry and comparative delay analysis techniques with SCL protocol, ECAM, 25 (2018) 497–533. https://doi.org/10.1108/ECAM-10-2016-0220
[6]. Standard excel solver-how the solver handles constraints-continued, https://www.solver.com/standard-excel-solver-how-solver-handles-constraints-continued.
[7]. L. Ho Viet, T. Trinh Thi, B. Ho Xuan, Swarm intelligence-based technique to enhance performance of ANN in structural damage detection, Transport and communications science Journal, 1 (2022) 1–15. https://doi.org/10.47869/tcsj.73.1.1
[8]. E. K. Burke, G. Kendall (eds), Search Methodologies, Springer, Boston, MA, (2005) 401-435. https://doi.org/10.1007/0-387-28356-0_14
[9]. H. John Holland, Genetic Algorithms, Scientific American, 267 (1992) 66–73 (Accessed 4 Aug. 2021).
[10]. S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization by Simulated Annealing, 220 (1983) 671-680. https://doi.org/10.1126/science.220.4598.671
[11]. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, A Gravitational Search Algorithm, Information Sciences, 179 (2009) 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004
[12]. X. S. Yang, Firefly algorithm: stochastic test functions and design optimization, IJBIC, 78 (2010). https://doi.org/10.1504/IJBIC.2010.032124
[13]. X.-S. Yang, D. A. Pelta, C. Cruz, G. Terrazas, N. Krasnogor, J. R. González, A New Metaheuristic Bat-Inspired Algorithm in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer Berlin Heidelberg, 284 (2010) 65–74. https://doi.org/10.1007/978-3-642-12538-6_6
[14]. S. Mirjalili, A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software, 69 (2014) 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
[15]. H. Faris, I. Aljarah, M. A. Al-Betar, S. Mirjalili, Grey wolf optimizer: a review of recent variants and applications, Neural Comput & Applic, 30 (2018) 413–435. https://doi.org/10.1007/s00521-017-3272-5
[16]. Reston, Virginia, Schedule Delay Analysis, American Society of Civil Engineers, 67 (2017) https://doi.org/10.1061/9780784414361
[17]. H. Doloi, A. Sawhney, K. C. Iyer, S. Rentala, Analyzing factors affecting delays in Indian construction projects, International Journal of Project Management, 30 (2012) 479–489. https://doi.org/10.1016/j.ijproman.2011.10.004
[18]. L. Le-Hoai, Y. D. Lee, J. Y. Lee, Delay and cost overruns in Vietnam large construction projects: A comparison with other selected countries, KSCE J Civ Eng, 12 (2008) 367–377. https://doi.org/10.1007/s12205-008-0367-7
[19]. P. Q. Tran, N. T. Q. Tran, P. T. Nguyen, Practical Solutions to Ensure the Schedule Management of Ho Chi Minh City Urban Railway Project in Vietnam: Survey of Expert’s Opinions, 8 (2020) 466–474. https://doi.org/10.13189/cea.2020.080409
[20]. N. Le, O. Chong, K. Sullivan, Construction Risks in Developing Countries: A Vietnam Case Study, 12 (2020) 30–49. https://doi.org/10.37265/japiv.v12i1.41
[21]. Đ. N. Hoang, L. Q. Nguyen, N. Q. Pham, Optimising schedule and cost of construction project using Differential Evolution, Journal of Science and Technology, 14 (2015) 135-141.
[22]. C. T. Hoang, T. H. Nguyen, H. T. Phung, Network diagram optimization under standard of time and cost by using Genetic Algorithms, Journal of Science and Technology, 122 (2014) 47-52.
[23]. F. H. Lermen, M. de F. Morais, C. Matos, R. Röder, C. Röder, Optimization of times and costs of project of horizontal laminator production using PERT/CPM technical, Ind. Jour. Man. & Prod., 7 (2016) 833–853. https://doi.org/10.14807/ijmp.v7i3.423
[24]. C. Muro, R. Escobedo, L. Spector, R. P. Coppinger, Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations, Behavioural Processes, 88 (2011) 192–197. https://doi.org/10.1016/j.beproc.2011.09.006
[25]. N. Gaither, G. Frazier, Production and Operations Management, Production and Operations Management, Thomson Learning, Sao Paulo, 2002.
[2]. M. Tian, R. J. Liu, G. J. Zhang, Solving the resource-constrained multi-project scheduling problem with an improved critical chain method, Journal of the Operational Research Society, 71 (2020) 1243–1258. https://doi.org/10.1080/01605682.2019.1609883
[3]. O. Lambrechts, E. Demeulemeester, W. Herroelen, A tabu search procedure for developing robust predictive project schedules, International Journal of Production Economics, (2008) 493–508. https:// doi: 10.1016/j.ijpe.2007.02.003
[4]. M. Zhao, X. Wang, J. Yu, L. Bi, Y. Xiao, J. Zhang, Optimization of Construction Duration and Schedule Robustness Based on Hybrid Grey Wolf Optimizer with Sine Cosine Algorithm, Energies, 215 (2020). https://doi.org/10.3390/en13010215
[5]. P. Shahsavand, A. Marefat, M. Parchamijalal, Causes of delays in construction industry and comparative delay analysis techniques with SCL protocol, ECAM, 25 (2018) 497–533. https://doi.org/10.1108/ECAM-10-2016-0220
[6]. Standard excel solver-how the solver handles constraints-continued, https://www.solver.com/standard-excel-solver-how-solver-handles-constraints-continued.
[7]. L. Ho Viet, T. Trinh Thi, B. Ho Xuan, Swarm intelligence-based technique to enhance performance of ANN in structural damage detection, Transport and communications science Journal, 1 (2022) 1–15. https://doi.org/10.47869/tcsj.73.1.1
[8]. E. K. Burke, G. Kendall (eds), Search Methodologies, Springer, Boston, MA, (2005) 401-435. https://doi.org/10.1007/0-387-28356-0_14
[9]. H. John Holland, Genetic Algorithms, Scientific American, 267 (1992) 66–73 (Accessed 4 Aug. 2021).
[10]. S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi, Optimization by Simulated Annealing, 220 (1983) 671-680. https://doi.org/10.1126/science.220.4598.671
[11]. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, A Gravitational Search Algorithm, Information Sciences, 179 (2009) 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004
[12]. X. S. Yang, Firefly algorithm: stochastic test functions and design optimization, IJBIC, 78 (2010). https://doi.org/10.1504/IJBIC.2010.032124
[13]. X.-S. Yang, D. A. Pelta, C. Cruz, G. Terrazas, N. Krasnogor, J. R. González, A New Metaheuristic Bat-Inspired Algorithm in Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer Berlin Heidelberg, 284 (2010) 65–74. https://doi.org/10.1007/978-3-642-12538-6_6
[14]. S. Mirjalili, A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software, 69 (2014) 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
[15]. H. Faris, I. Aljarah, M. A. Al-Betar, S. Mirjalili, Grey wolf optimizer: a review of recent variants and applications, Neural Comput & Applic, 30 (2018) 413–435. https://doi.org/10.1007/s00521-017-3272-5
[16]. Reston, Virginia, Schedule Delay Analysis, American Society of Civil Engineers, 67 (2017) https://doi.org/10.1061/9780784414361
[17]. H. Doloi, A. Sawhney, K. C. Iyer, S. Rentala, Analyzing factors affecting delays in Indian construction projects, International Journal of Project Management, 30 (2012) 479–489. https://doi.org/10.1016/j.ijproman.2011.10.004
[18]. L. Le-Hoai, Y. D. Lee, J. Y. Lee, Delay and cost overruns in Vietnam large construction projects: A comparison with other selected countries, KSCE J Civ Eng, 12 (2008) 367–377. https://doi.org/10.1007/s12205-008-0367-7
[19]. P. Q. Tran, N. T. Q. Tran, P. T. Nguyen, Practical Solutions to Ensure the Schedule Management of Ho Chi Minh City Urban Railway Project in Vietnam: Survey of Expert’s Opinions, 8 (2020) 466–474. https://doi.org/10.13189/cea.2020.080409
[20]. N. Le, O. Chong, K. Sullivan, Construction Risks in Developing Countries: A Vietnam Case Study, 12 (2020) 30–49. https://doi.org/10.37265/japiv.v12i1.41
[21]. Đ. N. Hoang, L. Q. Nguyen, N. Q. Pham, Optimising schedule and cost of construction project using Differential Evolution, Journal of Science and Technology, 14 (2015) 135-141.
[22]. C. T. Hoang, T. H. Nguyen, H. T. Phung, Network diagram optimization under standard of time and cost by using Genetic Algorithms, Journal of Science and Technology, 122 (2014) 47-52.
[23]. F. H. Lermen, M. de F. Morais, C. Matos, R. Röder, C. Röder, Optimization of times and costs of project of horizontal laminator production using PERT/CPM technical, Ind. Jour. Man. & Prod., 7 (2016) 833–853. https://doi.org/10.14807/ijmp.v7i3.423
[24]. C. Muro, R. Escobedo, L. Spector, R. P. Coppinger, Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations, Behavioural Processes, 88 (2011) 192–197. https://doi.org/10.1016/j.beproc.2011.09.006
[25]. N. Gaither, G. Frazier, Production and Operations Management, Production and Operations Management, Thomson Learning, Sao Paulo, 2002.
Tải xuống
Chưa có dữ liệu thống kê
Nhận bài
05/08/2021
Nhận bài sửa
21/12/2021
Chấp nhận đăng
25/02/2022
Xuất bản
15/05/2022
Chuyên mục
Công trình khoa học
Kiểu trích dẫn
Trinh Thi, T., & Nguyen Luong, H. (7600). An applied grey wolf optimizer for scheduling construction projects . Tạp Chí Khoa Học Giao Thông Vận Tải, 73(4), 397-411. https://doi.org/10.47869/tcsj.73.4.5
Số lần xem tóm tắt
231
Số lần xem bài báo
149