
Transport and Communications Science Journal, Vol. 76, Issue 04 (05/2025), 556- 567 

556 

 

Transport and Communications Science Journal 

 

ASSESSING LSTM ALGORITHM PERFORMANCE FOR DAILY 

RUNOFF PREDICTION AT HOA DUYET HYDROLOGICAL 

STATION, VIETNAM 

Hoang Nam Binh1, Tran Thu Phuong1*
, Hoang Duc Vinh2 Le Van Nghi2 

1University of Transport and Communications, No 3 Cau Giay Street, Hanoi, Vietnam 

2The National Key Laboratory of River and Coastal Engineering, Vietnam Academy for 

Water Resources, 171 Tay Son Street, Dong Da district, Hanoi, Vietnam 
 

ARTICLE INFO 

TYPE: Research Article 

Received: 30/12/2024 

Revised: 28/02/2025 

Accepted: 07/03/2025 

Published online: 15/05/2025 

https://doi.org/10.47869/tcsj.76.4.9  
* Corresponding author: 

Email: phuongtltv@utc.edu.vn 

Abstract. Accurate discharge forecasting is crucial for effective water resource management, 

flood risk mitigation, and hydrological planning, particularly in regions prone to extreme 

weather events. This study evaluates the performance of a Long Short-Term Memory (LSTM) 

network in predicting river discharge at the Hoa Duyet hydrology station. The prediction 

model is developed using rainfall data from the Ngan Sau river basin, collected over a 49-year 

period from 1975 to 2023. The model's accuracy was assessed across a range of lead times (1-

day, 3-day, 5-day, and 7-day) and time lag length (365, 90, 30, 10, and 7 days). It was 

revealed that short-term forecasts (e.g., 1-day) consistently achieved high accuracy, with the 

time lag length 90-day yielding the best Nash-Sutcliffe Efficiency (NSE) of 0.864. Seasonal 

analysis indicated the reliability of the model for the rainy season (NSE = 0.863), but lower 

accuracy during the dry season (NSE = 0.582), reflecting the challenges of predicting low-

flow dynamics. The model also demonstrated reasonable accuracy in predicting annual runoff 

peaks, with an average error of 91.75 m³/s, although discrepancies were observed in specific 

years. These findings highlight the LSTM model's capacity to adapt to diverse temporal 

configurations and hydrological conditions, making it a valuable tool for discharge prediction 

while emphasizing the need for further optimization in low-flow and extreme event scenarios. 
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1. INTRODUCTION  

Research and forecasting of flow are of practical and scientific importance. The 

fundamental properties of flood flow (i.e. duration, intensity and peak module) are frequently 

associated with the prevailing meteorological and geographical characteristics of the basin.  

Rainfall-runoff simulation models have a long-established presence within the domain of 

hydrological science. The earliest studies that sought to predict the flow discharge from 

rainfall events through the utilisation of regression methods were conducted approximately 

170 years ago [1]. Since then, modeling concepts have been continuously developed by 

gradually combining concepts based on (numerical) model formulations. These include the 

consideration of spatial variability of processes, boundary conditions and physical properties 

of the catchment. However, the development towards a combined, physical and spatial 

formulation of hydrological processes at the catchment scale often comes at the cost of high 

computational costs and very large input data requirements [2]. 

In Northern Vietnam, hydrological forecasting was virtually non-existent prior to 1954. 

There is a lack of observation data, with the exception of water level data at hydrological 

stations on Da River (Lai Chau, Hoa Binh), Thao River (Lao Cai, Yen Bai), Lo River (Tuyen 

Quang) and so on [3]. Following 1954, and particularly since 1981, the development of flow 

forecasting began to take place. The application of hydrological models in Vietnam, including 

SSAAR, TANK, NAM, and HEC-HMS, has yielded favourable outcomes in the context of 

flow forecasting for major river basins within the nation [4]. However, it should be noted that 

these models require a substantial number of input parameters, a considerable simulation 

time, and a high level of experience on the part of the forecaster.  

Recently, Artificial Intelligence (AI) has made significant contributions to the fields of 

science and technology, particularly in the area of big data management, including 

hydrological forecasting. One of the earliest algorithms developed was the Artificial Neural 

Network (ANN) algorithm. Binh H.N. [5, 6] applied of ANN with Error backpropagation 

Networks (EBN) to predict the peak flow for the Hoang Long river in Ninh Binh province, 

Vietnam and the dry season discharge for the Ta Trach river in Thua Thien Hue province, 

Vietnam. These studies indicate that EBN has the capacity to predict daily discharge with a 

reasonable degree of reliability and lead times ranging from 1-day to 7-day. Cheng, M., et al. 

[7] applied ANN to forecast daily and monthly discharge scales for a long lead-time period 

for the Nan river in Thailand. It has been demonstrated that, under optimal parameter 

configuration, the model demonstrates the capacity to generate precise daily forecasts with 

lead time up to 20 days. Furthermore, machine learning algorithms such as Support Vector 

Regression (SVR), Decision Tree (DT), Random Forest (RF), Light Gradient Boosting 

Machine Regressor (LGBM), and Linear Regression (LR) have been employed to predict 

water levels. Hanh N. D., et al. [8] examined the effectiveness of various machine learning in 

predicting water levels with lead times of 1-day, 3-day, 5-day and 7-day. These algorithms are 

being used to forecast the water level at the Cao Lanh gauging station on the Tien river, 

located within the Vietnamese Mekong Delta. The findings of this study demonstrate that the 

SVR model exhibited consistent superiority over the other models in all scenarios, with RF, 

DT, and LGBM ranking second, third, and fourth, respectively. 

Machine learning techniques, particularly deep learning models like Long Short-Term 

Memory (LSTM) networks, have emerged as powerful tools for addressing the challenges of 

modeling non-linear and sequential data in hydrology [9, 10]. LSTM network is a special 
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upgraded architecture of Recurrent Neural Networks (RNN) invented by Hochreiter and 

Schmidhuber in 1997 [11]. The LSTM method has been demonstrated to outperform the ANN 

model in the context of daily streamflow forecasting for a long lead time [7]. LSTM networks 

have been shown to be particularly effective in the retention of long-term dependencies and 

the management of temporal variability, rendering them highly suitable for the analysis of 

time series data, including rainfall, discharge, and water level records. Their ability to capture 

complex patterns and relationships has led to significant advancements in discharge 

prediction, flood forecasting, and water resource management. Recent studies have 

demonstrated the efficacy of LSTM models in enhancing forecast accuracy and reliability 

under various hydrological scenarios. The LSTM model has been identified as the optimal choice 

for predictions with short lead times, demonstrating superior performance in comparison to the 

bidirectional LSTM (BiLSTM) and the Gated Recurrent Unit (GRU) in some cases [12]. However, 

despite these achievements, further exploration of their performance under diverse temporal 

configurations and seasonal conditions is required to fully harness their potential and address 

specific challenges in hydrological forecasting. 

The primary objective of this study is to evaluate the performance of LSTM algorithms in 

predicting river discharge based on rainfall data at Hoa Duyet hydrology station, Ngan Sau 

river in Ha Tinh province. The study focuses on assessing the model's accuracy across 

different lead times, including 1-day, 3-day, 5-day, and 7-day predictions, and varying time lag 

length, such as 365, 90, 30, 10, and 7 days, to determine the optimal look back period. 

Moreover, the research examines seasonal variations in model performance, analyzing 

predictions for the entire year, the rainy season, and the dry season to identify strengths and 

limitations under diverse hydrological conditions. The research results will contribute to the 

diversification of approaches in simulating and predicting rainfall flows as well as the 

potential of applying artificial intelligence in hydrological forecasting in Vietnam. 

 

Figure 1. Study area with a background image sourced from Google Earth. 
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2. DATA AND METHODOLOGY 

2.1. Study area and dataset 

The Ngan Sau River constitutes one of the two primary tributaries of the La River basin. 

Its origins are situated within the Giang Man mountain range in the Huong Khe district of Ha 

Tinh province, Vietnam, and it converges with the Ngan Pho River at Linh Cam. The length 

of the main stream of Ngan Sau from spring to Linh Cam hydrological station is 102km. The 

catchment area of Chu Le, Hoa Duyet and Linh Cam hydrological stations is 970 km2, 1880 

km2 and 2060 km2 respectively (Figure 1). The primary course of the Ngan Sau River 

experiences a constriction at Hoa Duyet, impeding effective flood drainage. 

The topography of the Ngan Sau River basin is characterized by two distinct terrains: 

midland hills and high mountains. The Midland region is characterized by a topographical 

range extending from an altitude of 20m to 200m. The topography of the area surrounding the 

Ngan Sau River is predominantly flat, with a pronounced main slope directed towards the 

riverbeds. It is evident that as one moves further away from the river, the terrain becomes 

increasingly complex. The topography of high mountain terrain is characterized by elevations 

ranging from 1200 to 1500m, steep slopes, and narrow valleys. 

The input data for this study comprise daily time series extending over a period of 49 

years (1975–2023) and include: (i) rainfall measurements from the Huong Khe meteorological 

station and Chu Le, Hoa Duyet hydrological stations; (ii) discharge and water level data from 

the Hoa Duyet hydrological station (Table 1). These variables are closely associated with flow 

formation in the Ngan Sau river basin and at the Hoa Duyet hydrological station. Each data 

series exhibits varying degrees of correlation. In the LSTM model, the correlation between 

input variables and the target forecast variable is critical for ensuring the model's relevance 

and predictive accuracy. Input data exhibiting strong correlations to the target variable 

provides more substantial information for predicting its behaviour [13] and are therefore 

prioritized for developing effective predictive models. 

Table 1. Statistical characteristics of input data. 

  Date X_Chule X_HuongKhe X_HoaDuyet H_HoaDuyet Q_HoaDuyet 

Count  17897 17897 17897 17897 17897 

Mean  6.10 5.17 6.48 2.35 113.06 

Min 01/01/1975 0 0 0 1.02 0.2 

25%  0 0 0 1.75 34.4 

50%  0 0 0 2 52.6 

75%  2 1.3 2.4 2.44 94.5 

Max 12/31/2023 548.2 492.6 681.5 12.62 3300 

Std  22.78 20.89 23.70 1.21 232.80 

The performance of forecasting models, such as the LSTM model used in this study, is 

highly dependent on the quality and quantity of the input time series data [14]. The dataset 

under consideration has been collected over a period of 49 years, resulting in a total of 17,897 

data points. This extensive collection provides a robust foundation for the training and testing 

of the model. The long-term dataset encompasses a wide range of hydrometeorological 

conditions, thereby ensuring that the model is exposed to a substantial degree of variability, 

which enhances its ability to generalize and improve predictive accuracy. This extensive 
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temporal coverage also facilitates a detailed analysis of patterns and relationships within the 

data, thereby supporting the development of a reliable forecasting framework. 

All data were normalized to the range of 0 to 1 by formula (1) via the sklearn library in 

Python. 

x min(x)
z

max(x) min(x)

−
=

−
 (1) 

where, z is the normalized value, x is the original data value. 

2.2. Long Short-Term Memory algorithm 

The structure of the LSTM network consists of many LSTM cells (LSTM memory cells) 

connected together (Figure 2). The LSTM network incorporates an internal cell state and three 

gates - namely, the forget gate, input gate, and output gate - that regulate the flow of 

information into and out of the cell. At each time step, the gates sequentially process an input 

value (representing an element in the input sequence) along with the output value from the 

cell's previous time step. The forget gate is designed to discard irrelevant information, the 

input gate selects and retains essential information, and the output gate determines which 

information from the cell state is propagated as the output. This gating mechanism enables the 

LSTM network to effectively manage long-term dependencies in sequential data. 

 

Figure 2. Illustration of the inner workings of LSTM. 

The functions depicted in Figure 2 are determined as follows [15]: 

( )t f t f t 1 ff W x U h b−=  + +  (2) 

( )t i t i t 1 ii W x U h b−=  + +  (3) 

( )t t t 1C C C
C tanh W x U h b−= + +  (4) 
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t t t 1 t tc f c i C−=  +   (5) 

( )t o t o t 1 oo W x U h b−=  + +  (6) 

( )t t th tanh c o=   (7) 

where σ is the logistic sigmoid function, W is weight of the input value, U is weight of the 

hidden state, b is a bias, tC  is a vector with values in the range (-1, 1), tanh is the hyperbolic 

tangent, and   denotes element-wise multiplication. 

For the loss function, we defined the dimensional attributes of both input and output 

tensors and systematically investigate multiple loss functions, encompassing the custom 

nse_loss function. This facilitates a comprehensive assessment of the model's predictive 

proficiency utilizing diverse evaluation criteria, including the Nash-Sutcliffe efficiency 

metric. Regarding optimization algorithm, the Adam algorithm was employed during both the 

training and validation stages of the LSTM model due to its widespread application in real-

world scenarios [16]. 

2.3. Model evaluation 

The 49-year dataset was partitioned into two subsets: 38 years (1975 - 2012), constituting 

approximately 80% of the total data, were utilized for training, while 11 years (2013 - 2023) 

served for testing the LSTM model. The LSTM model was developed with varying data 

structures, defined by time lag and lead time. The time lag length is defined as the number of 

past days used to forecast the current time step. In this study, time lag of 365 days (1 year), 90 

days (3 months), 30 days (1 month), 10 days (1/3 month), and 7 days (1 week) were 

employed, in alignment with the daily hydrometeorological series. The lead time represents 

the future days for which the model aims to forecast, with forecasts for 1 day, 3 days, 5 days, 

and 7 days utilized to assess the model's accuracy.  

The model's performance was assessed using the Nash-Sutcliffe Efficiency (NSE) 

calculated as per Equation (8), the Root Mean Squared Error (RMSE) determined using 

Equation (9), (10), and the Mean Absolute Error (MAE) derived from Equation (11). 

( )

( )

n 2
obs sim
t t

t 1

n 2
obs obs
t mean

t 1

Q Q

NSE 1

Q Q

=

=

−

= −

−




 (8) 

( )
n 2

obs sim
t t

t 1

1
MSE Q Q

n =

= −  (9) 

RMSE MSE=  (10) 

n
obs sim
t t

t 1

1
MAE Q Q

n =

= −  (11) 
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where n is the length of the data set, obs
tQ  is observed discharge at the time t, sim

tQ  is the 

predicted discharge at the time t and obs
meanQ  is the average value of observed timeseries 

discharge. 

3. RESULTS AND DISCUSSION 

3.1. Time lag and lead time 

The results of the LSTM model for discharge prediction from rainfall demonstrate clear 

trends across different lead times (1-day, 3-day, 5-day, and 7-day) and time lag length (365, 90, 

30, 10, and 7 days) (Table 2). For the NSE, the model achieves its best performance for short-

term forecasts, particularly the 1-day forecast, with NSE values consistently high across all 

time lag length (0.856 - 0.864). The time lag length 90-day achieves the highest NSE (0.864) for 

the 1-day forecast, indicating that medium-term historical rainfall patterns provide the most 

useful information for short-term discharge prediction. As the lead time increases to 3, 5, and 

7 days, NSE values decline steadily, reflecting the model's reduced predictive capability for 

longer horizons due to increasing uncertainty and compounding errors. The time lag length 7-

day demonstrates a marginal enhancement in NSE performance for extended forecasts, 

underscoring the impact of recent rainfall events. 

Table 2. Comparison of NSE, MSE and MAE corresponding to different time lag and lead times. 

Metrics Lead times 
Time lag length (days) 

365 90 30 10 7 

NSE 

(-) 

1 days 0.857 0.863 0.861 0.856 0.858 

3 days 0.591 0.599 0.583 0.589 0.596 

5 days 0.436 0.429 0.441 0.438 0.442 

7 days 0.301 0.352 0.346 0.349 0.356 

RMSE 

(m3/s) 

1 days 82.68 82.71 91.24 98.66 97.95 

3 days 135.92 141.73 143.42 142.09 140.75 

5 days 159.73 169.11 166.13 166.15 165.48 

7 days 177.85 180.16 179.76 178.84 177.80 

MAE 

(m3/s) 

1 days 27.77 29.85 31.58 27.71 27.65 

3 days 57.29 44.64 54.65 57.73 47.76 

5 days 61.57 63.98 54.72 55.45 54.54 

7 days 68.06 63.11 62.43 64.37 62.26 

For RMSE, the errors remain low for the 1-day forecast across all time lag length, with the 

365-day time lag achieving the smallest RMSE (82.68 m³/s). However, as the lead times 

increases, RMSE increases significantly, indicating larger prediction errors over longer lead 

times. For example, RMSE for the 7-day forecast ranges between 177.80 and 180.16 m³/s, 

with the 365-day lag still demonstrating the lowest error. This suggests that longer historical 

time windows may provide additional context for discharge prediction, particularly for longer 

forecasts. Despite the increase in RMSE over time, the relatively small variation between time 

lag length demonstrates that the LSTM model can adapt well to different temporal inputs, 

though with reduced accuracy for extended forecasts. 

The MAE follows a similar trend, showing low values for the 1-day forecast and 

increasing progressively with longer lead times. For short-term predictions, the 7-day and 

365-day lags perform best, achieving the lowest MAE (27.65 and 27.77 m³/s, respectively). 
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As the forecast horizon extends to 3, 5, and 7 days, the errors increase, with MAE reaching up 

to 68.06 m³/s for the 7-day forecast under the 365-day lag. Interestingly, for 3-day forecasts, 

the 90-day lag achieves the lowest MAE (44.64 m³/s), suggesting that medium-term temporal 

windows are particularly useful for balancing short- and medium-term discharge predictions. 

Overall, the results show that shorter time lag length (e.g., 7 days) are more effective for longer 

forecasts, while medium-term lags (90 days) perform best for short-term predictions, 

reflecting the model's ability to capture different temporal dynamics depending on the forecast 

horizon. 

 

Figure 3. Comparison of observed and predicted discharge by LSTM with 1-day forecasting 

period. 

Figure 3 presents a comparison of the predicted and observed discharge over the past 11 

years at Hoa Duyet station, considering a time lag of 90 days and a lead time of 1 day. The 

results demonstrate that the LSTM model effectively captures the annual flow patterns, as 

well as discharge during both the dry and flood seasons. However, for major flood events 

characterised by peak discharges exceeding 2000 m³/s, the model tends to underestimate the 

flood peaks. This discrepancy can be attributed to the rarity of large floods, particularly 

extreme events exceeding 2500 m³/s, which have occurred only four times over a 49-year 

period. Such limited occurrences constrain the model's ability to learn and generalize these 

extreme events, leading to higher prediction errors for significant flood peaks. 

3.2. Annual flood peak prediction ability 

The comparison of annual runoff peaks between observed values and LSTM predictions 

(Table 3) shows that the LSTM model performs reasonably well but exhibits some 

discrepancies in certain years. The observed peak values range from 545 m³/s (2014) to 2720 

m³/s (2016), with an overall average of 1695.27 m³/s. Concurrently, the LSTM model 

predicted an average of 1603.52 m³/s, which is comparable to the observed mean but has a 

tendency to underestimate or overestimate in individual years. For instance, in 2019, the 

LSTM model significantly underpredicted the observed peak (2480 m³/s) by 549.42 m³/s, 

while in 2023, it overestimated the peak by 356.05 m³/s. However, smaller errors were 

observed in years such as 2018 (25.46 m³/s) and 2021 (15.87 m³/s), indicating enhanced 

model performance. The mean error across all years is 91.75 m³/s, which demonstrates the 
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model's overall reliability but also emphasises the necessity for further enhancements to 

address sporadic substantial deviations. 

Table 3. Annual runoff peaks of observed values and LSTM predictions. 

 No Year 
Qpeak_Obs  

(m3/s) 

Qpeak_LSTM  

(m3/s) 

Error 

(m3/s) (%) 

1 2013 2370 2265.52 104.48 4.41 

2 2014 545 393.69 151.31 27.76 

3 2015 1530 1701.38 -171.38 -11.20 

4 2016 2720 2464.15 255.85 9.41 

5 2017 1530 1424.72 105.28 6.88 

6 2018 863 837.54 25.46 2.95 

7 2019 2480 1930.58 549.42 22.15 

8 2020 2000 1759.85 240.15 12.01 

9 2021 1060 1044.13 15.87 1.50 

10 2022 1490 1401.09 88.91 5.97 

11 2023 2060 2416.05 -356.05 -17.28 

Average 1695.27 1603.52 91.75 5.41 

3.3. Seasonal and annual performance evaluation 

The performance of the LSTM model for runoff prediction shows varying accuracy 

across the whole year, the rainy season, and the dry season, as indicated at Table 4. 

Throughout the year, the overall NSE is high at 0.864, demonstrating reliable model 

performance. The MAE and RMSE are 28.66 and 82.38, respectively. Notably, years like 

2016 and 2020 stand out with exceptional NSE of 0.907 and 0.925, respectively, indicating 

strong predictive accuracy. 

Table 4. The seasonal and annual performance for testing period 

Year 
Whole year Rainy season Dry season 

MAE RMSE NSE MAE RMSE NSE MAE RMSE NSE 

2013 42.34 127.25 0.848 58.60 155.41 0.836 6.18 17.67 0.691 

2014 14.93 30.85 0.654 22.61 39.04 0.692 8.38 19.25 0.575 

2015 16.91 44.86 0.882 26.35 60.91 0.888 6.02 12.83 0.672 

2016 34.62 119.47 0.907 63.20 168.44 0.898 11.11 19.28 0.656 

2017 24.74 63.63 0.882 36.29 86.05 0.877 10.72 23.86 0.528 

2018 26.36 70.19 0.725 41.47 96.92 0.714 11.79 20.03 0.626 

2019 31.95 94.91 0.838 53.67 133.08 0.832 11.93 24.79 0.470 

2020 33.20 77.14 0.925 51.73 105.32 0.926 24.60 58.19 0.510 

2021 39.15 83.50 0.645 54.10 103.10 0.662 17.91 29.46 0.440 

2022 27.93 81.05 0.721 40.02 110.84 0.718 10.91 23.33 0.528 

2023 26.48 77.73 0.868 38.65 103.54 0.869 31.17 72.81 0.568 

Overall 28.66 82.38 0.864 44.24 111.60 0.863 12.27 28.71 0.582 

Conversely, years like 2021 and 2014 have lower NSE of 0.645 and 0.654 respectively, 

indicating reduced performance likely due to more complex hydrological dynamics or data 

limitations (Figure 4). Overall, the LSTM model performs well for annual predictions, with 

error values relatively stable across most years. 
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Figure 4. The NSE metric of whole year, rainy season and dry season. 

During the rainy season, the LSTM model maintains high accuracy, with an overall NSE 

of 0.863, slightly lower than for the whole year but still reliable. The errors, however, 

increase, with MAE at 44.24 and RMSE at 111.60, which reflects the increased complexity of 

discharge prediction during high-flow periods. Years such as 2016 and 2020 again 

demonstrate excellent performance with NSE around 0.898 and 0.926, respectively, while 

years like 2018 and 2021 have lower NSE of 0.714 and 0.662. This suggests that the model 

struggles to predict extreme variations during heavy rainfall events in certain years. Larger 

errors during the rainy season are expected due to the influence of intense precipitation, 

leading to abrupt changes in runoff patterns that are harder to model. 

For the dry season, the overall performance declines compared to the whole year and 

rainy season, with a NSE of 0.582, MAE of 12.27, and RMSE of 28.71. The lower NSE 

indicate that predicting discharge during the dry season is more challenging, likely due to 

smaller discharge variations and sensitivity to noise. For example, 2013 achieves the best NSE 

at 0.691, with a very low MAE of 6.18, while other years like 2021 and 2019 show poor 

performance with NSE of 0.440 and 0.470, respectively. Additionally, errors in years like 

2023 are relatively high, with an MAE of 31.17 and RMSE of 72.81, indicating difficulty in 

capturing low-flow dynamics. These results suggest that while the LSTM model is effective 

for high-flow periods, additional calibration or alternative methods might be needed to 

improve predictions during dry seasons. 

4. CONCLUSIONS 

The results of this study demonstrate the effectiveness of the LSTM model for discharge 

prediction from rainfall, with varying levels of accuracy depending on the lead time, time lag 

length, and hydrological season. The model achieves its highest predictive performance for 

short-term forecasts, particularly for 1-day predictions, with NSE values consistently high 

across all time lag length, peaking at 0.864 for the 90-day lag. As the lead time extends, the 

accuracy diminishes, with increasing RMSE and MAE values reflecting greater uncertainty. 

The model's ability to capture different temporal dynamics is evident, as medium-term lag 

times (e.g., 90 days) excel in short-term forecasts, while shorter lags (e.g., 7 days) perform 

better for longer lead times. The medium-term lag times optimally balance short-term 

fluctuations and long-term trends, enhancing the model's ability to learn cyclic variations. 
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While shorter lags may fail to incorporate sufficient seasonal context, and longer lags (e.g., 

365 days) obscure recent variations, the 90-day lag provides a suitable compromise, 

improving prediction performance. Analysis of annual runoff peaks reveals the model’s 

general reliability, though discrepancies in certain years suggest the need for refinement to 

address extreme events. 

Seasonal performance evaluation further highlights the model's strengths and limitations. 

The LSTM model performs well for annual and rainy-season predictions, achieving high NSE 

of 0.864 and 0.863, respectively. However, larger errors during the rainy season reflect the 

challenges of modelling abrupt runoff changes caused by intense precipitation. For dry-season 

predictions, performance declines with a NSE of 0.582, indicating difficulty in capturing low-

flow dynamics. Notably, some years, such as 2016 and 2020, stand out with exceptional 

performance, while others, like 2021 and 2014, reveal reduced accuracy due to complex 

hydrological conditions. These findings underscore the LSTM model's potential for 

hydrological forecasting while highlighting areas for further optimization, particularly for dry-

season and long-term forecasts. 
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