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Abstract. Rolling bearing faults have been capturing substantial research attention as they are the 

root causes of malfunctions in mechatronics systems than any other factors. The detection of rolling 

bearing faults in the early stage is therefore a mandatory requirement demanded by reliable industrial 

plants. To release the dependence of diagnostic methods on human expertise and system’s 

understanding, this work proposes a fault classification method for rolling bearings that is based on a 

deep learning framework. The framework consists of a minimax entropy domain adaptation algorithm 

augmented with a signal generalization algorithm. The function of the signal generalization algorithm 

is to reduce the domain shift between training and testing datasets that are often obtained 

experimentally from different working conditions. The generalized signal is then represented in the 

form of Fourier series whose coefficients contain intrinsic information that associated with different 

types of bearing faults. A convolutional neural network extracts the hidden information of bearing 

faults buried in the Fourier coefficients and then categorises the working condition of the bearing 

under test. By combining the advantages of both signal processing techniques in the frequency domain 

and the minimax entropy domain adaptation, the novel diagnostic framework is able to detect bearing 

faults from different working conditions. The effectiveness of the proposed diagnostic algorithm is 

experimentally verified by two case studies that were prepared with different types and levels of 

bearing faults. 

Keywords: Fast Fourier transform, bearing faults, deep learning, semi-supervised domain 

adaptation.  
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1. INTRODUCTION  

According to the IEEE 1983-85 motor survey and the Electric Power Research Institute 

(EPRI) sponsored survey, bearing failures are responsible for more than 40% of all medium-

size induction motor malfunctions [1]. The severity of incipient bearing faults has therefore 

attracted extensive research attention aiming to develop effective fault diagnostic methods, 

which can provide great contributions in terms of cost reduction for maintenance and 

productivity improvement [2-6]. The state-of-the-art methods for bearing condition monitoring 

can be categorized into three main streams, including model-based, signal-based, and data-

driven-based methods [7]. The idea behind the first stream lies in tracking the 

changes/derivations of either state variables, model parameters or system’s outputs from 

expected values to tell whether or not the system has a fault [8-9]. The primary advantages of 

the model-based diagnostic methods are associated with the requirement of only a small amount 

of data to detect the fault and the fact that it can be implemented online. However, the model-

based methods require a rich understanding of the system, from which an accurate input-output 

model must be formed and used in the fault detection procedure. For complex systems, the 

model-based methods are inapplicable as any input-output models are often unavailable.  

The signal-based fault diagnostic methods are based on the analysis of the output signals 

where vibration, sound, speed, force/torque, motor current and magnetic density are widely 

used. Since a fault within the system can cause changes in the system output signals, it is 

possible to analyze the signals to extract intrinsic information that has correlation with the 

bearing faults [7]. The most well-known signal-based diagnostic method is based on motor 

current signals (MCS) [10-13]. According to the MCS method, if there is a failure in the 

bearings of a machine, the air gap flux is modulated and the stator currents are generated at 

predictable frequencies which are also known as characteristic fault frequencies. The bearing 

damages can be detected if there are noticeable harmonics in the spectrum of the stator currents 

at the characteristic fault frequencies. The MCS method was proven successful in detecting 

single-point defects on the inner raceway, outer raceway, balls or cage of rolling bearings. 

Recently, deep learning has been investigated extensively to release the dependency of 

data-driven methods on the human’s a priori understanding of the system. One can find a plenty 

of research on deep learning algorithms for fault classification focusing on the development of 

either a new model structure, transferable knowledge or optimization of the model’s parameters 

[14-16]. It is widely accepted that the multilayer structure included in the deep learning 

framework can extract hidden discriminative features in the raw signal and construct the 

relationship between the extracted features and the fault labels, thus ensuring a high precision 

fault classification. However, there are still two critical issues associated with the deep learning-

based methods [18]. First, a strong domain shifts between the training and testing data makes 

the fault classifier difficult to generalize well on the testing data. The domain shift is commonly 

found in industrial scenarios as a faulty bearing may be operated at different working conditions 

regarding the motor speed, load torque, and external forces [19]. Second, a deep learning model 

often requires a large number of labeled samples in the training process. Unfortunately, in the 

real situation, only a small portion of samples are labeled due to the cost of data acquisition 

process and the requirement of human expertise.  

From the advantages and disadvantages of the available bearing faults diagnostic methods, 

there is an open question on how we can build up a framework that can use the intrinsic 
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information obtained from signal processing techniques and overcome the two critical issues of 

deep learning algorithms as aforementioned. Inspired by the idea of semi-supervised feature 

learning and the fast Fourier transform, we propose a new framework for bearing fault diagnosis 

as depicted in Figure 1. The highlight of the framework lies in the combination of a signal 

generalization algorithm (SGA) aiming to reduce the domain shift and a semi-supervised 

algorithm following the minimax entropy (MME) domain adaptation [20]. 

 

Figure 1. Fault diagnostic framework: (a) the traditional approach, and (b) the proposed framework. 

The contributions of this paper can be summarized as follows: 

1) Following the calculation of the characteristic fault frequencies, we show how the motor 

speed affects the domain distribution of the measured vibration signal and why the vibration 

signal contains elemental information about the bearing damages.  

2) A new diagnostic framework composing of a SGA and a semi-supervised domain 

adaptation algorithm is proposed. The SGA aims to reduce the domain shift between the 

training and testing data. To do so, the raw signal is scaled and then represented in terms of 

Fourier series. The Fourier coefficients that contain inherent information about the 

characteristic fault frequencies are used as the input of the semi-supervised algorithm where a 

MME is adopted. 

3) Two case studies are used to verify the effectiveness of the proposed framework. First, 

the performance of the MME domain adaptation is tested with and without the use of the SGA. 

Then, the MME is compared with related work for diagnosing the rolling bearing faults. 

From herein, the paper is organized as follows. Section 2 is dedicated to the signal 

generalization algorithm, where the insight into the characteristic fault frequencies is also 

elaborated. Section 3 focuses on the MME model for the bearing fault classification, followed 

by experimental results given in Section 4. Finally, some conclusions are stated in Section 5. 

 
Figure 2. Graphical representation of a rolling bearing: the axial view (left) 

and the cross-section view (right). 

2. SIGNAL GENERATION ALGORITHM (SGA) 

In this section, the theoretical fundamental of the characteristic fault frequencies associated 

with different types of bearing faults is presented. Then a signal generalization algorithm for 

time-dependent signals is proposed. 
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2.1 Characteristic fault frequencies of rolling bearings 

Figure 2 shows the structure of an angular rolling bearing. There are four main elements in 

the bearing, namely an inner raceway, an outer raceway, a cage and balls. The load angle is 

denoted by 𝛼. 𝑑b, 𝑑c, 𝑑i, 𝑑o are the diameter of the balls, the cage, the inner raceway and the 

outer raceway, respectively  [21].  

Under the assumption that the outer raceway is fixed inside the bearing housing, the 

characteristic fault frequencies on the outer raceway 𝑓ORF, on the inner raceway 𝑓IRF, on the 

balls 𝑓BF and on the cage 𝑓CF are given as follows [22]: 

𝑓ORF =
𝑧

2
∙ 𝑓n ∙ (1 −

𝑑b
𝑑c

∙ cos𝛼) (1) 

𝑓IRF =
𝑧

2
∙ 𝑓n ∙ (1 +

𝑑b
𝑑c

∙ cos𝛼) (2) 

𝑓BF =
𝑑c
2𝑑b

∙ 𝑓n ∙ (1 −
𝑑b
2

𝑑c2
∙ cos2𝛼) (3) 

𝑓CF =
1

2
∙ 𝑓n ∙ (1 −

𝑑b
𝑑c

∙ cos𝛼) (4) 

where z is the number of bearing balls and 𝑓n is the rotational frequency of the inner raceway.  

It can be seen from Eq. (1) – Eq. (4) that the characteristic fault frequencies depend on the 

mechanical dimension of the bearing, on the load angle, and on the inner raceway rotational 

speed. To have a deeper insight into the characteristic fault frequencies, we examine the 

benchmark dataset KAt [23]. To prepare the KAt dataset, an accelerometer was used to measure 

the housing acceleration 𝑎(𝑡) of a bearing whose parameters are given in Table 1. 

Table 1.   Parameters of the bearings for KAt dataset 

Parameter Symbols Value 

Cage’s diameter 𝑑c 28.55 mm 

Number of balls 𝑧 8 

Load angle 𝛼 00 

Ball’s diameter 𝑑b 6.75 mm 

According to Eq. (1), the outer raceway fault frequency corresponding to the motor speed 

𝑛1 = 900 min−1 (𝑓1n = 15 Hz)  and 𝑛2 = 1500 min−1 (𝑓2n = 25 Hz)  is 𝑓1ORF = 45.81 Hz 
and 𝑓2ORF = 73.35 Hz , respectively. The spectrum of the vibration signal associated with 

KA04 is shown in Figure 3(a). It is observed that the amplitudes of the harmonics at the 

characteristic fault frequency and their multiples are significant compared to other frequencies. 

𝑓ORF
𝑘 = 𝑘 ∙ 𝑓ORF,    𝑘 = 1, 2, 3… (5) 
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Figure 3(a). Characteristic fault frequency 

corresponding to an outer raceway defect 

(KA04-KAt: making interpolation of one 

sample with 64,000 data points). 

 
Figure 3(b). Characteristic fault frequency and 

the sideband effect corresponding to an inner 

raceway defect (KI18-KAt: making 

interpolation of one sample with 64,000 data 

points). 

The characteristic fault frequencies are observed at the round up or round down of the 

theoretical frequencies when they are not integers. An increase in the motor speeds shifts the 

fault frequency and its multiples from the left to the right.  

For the case of an inner raceway defect, experiment KI18 is considered. The spectrum of 

the vibration signal with the motor speed 𝑛2 = 1500 min−1  is depicted in Figure 3(b). 

According to Eq. (2), the inner raceway fault frequency is 𝑓IRF = 123.64 Hz. Figure 3(b) shows 

that harmonics at 𝑓IRF and their multiples are clearly visible. 

𝑓IRF
𝑘 = 𝑘 ∙ 𝑓IRF,    𝑘 = 1, 2, 3…      (6) 

The inner raceway effect has a distinctive phenomenon related to the sideband effect 

resulting from a so-called load zone distribution. It was proven that when a radial load is applied 

to a bearing, the rolling elements are not equally loaded [24]. When the inner raceway defect 

rotates through the load zone, an impulse is generated every time a ball passes the damaged 

area. The intensity of the shock will be at its greatest magnitude if the defect is located at the 

point of maximum radial force. Therefore, the most intense impulse is generated on every turn 

of the machine, assuming that the inner raceway synchronously rotates with the shaft of the 

driven machine. As the modulated signal produces spectral components at the sum- and 

difference- frequencies, the sidebands around 𝑘 ∙ 𝑓IRF will be appear at any frequencies given 

by 

𝑓IRF
𝑘,𝑣 = 𝑘 ∙ 𝑓IRF + 𝑣 ∙ 𝑓n,    𝑘 = 1, 2, 3… , 𝑣 =  ±1,±2 …      (7) 

The sideband effect is clearly observed in Figure 3(b). The spectral analysis shown in 

Figure 3(a) and Figure 3(b) proves that the vibration signal contains elemental information 

about the bearing damages that are hidden in terms of characteristic fault frequencies. The fault 

frequencies are therefore widely used in diagnostic methods. In this research work, we propose 

a diagnostic model that utilizes the spectral information of the vibration signal rather than the 

raw data.  

2.2. Signal Generalization Algorithm (SGA) 

Our key idea lies in the signal generalization algorithm aiming to reduce the domain shift 

of time-dependent raw signals measured at different motor speeds. Without the loss of 



Transport and Communications Science Journal, Vol. 75, Issue 01 (01/2024), 1110-1124 

 

1115 

 

generality, supposing that we need to generalize vibration signals 𝑣1(𝑡) and 𝑣2(𝑡) associated 

with motor speeds 𝑛1(min
−1)  and 𝑛2(min

−1) , respectively. The signal generalization 

algorithm is in Table 2. 

There are some important considerations while conducting the SGA. First, in theory, 𝑁FFT 

is no more than 1/2 ∙ 𝑁s ∙ min(𝑘1, 𝑘2). 𝑁FFT is a hyper-parameter and is chosen empirically. 

The higher the value of 𝑁FFT, the more harmonics and hence the more features to be considered, 

and the more cubersome the deep learning model is. Second, ∆𝑛max decides how much domain 

shift is remained in the generalized signals. ∆𝑛max should be as small as possible but no need 

to be zero because a domain adaptation algorithm can handle effectively a small domain shift. 

In real scenarios where the motor is operated at hundreds revolution per minute, ∆𝑛max ≤
100 min−1 can be selected. Third, the FFT algorithm in Step 3 can be carried out with a sliding-

window method [25], especially in the case 𝑁FFT  is small compared with 1/2 ∙ 𝑁s ∙
min (𝑘1, 𝑘2). This feature enables the SGA to be conducted online. And finally, the algorithm 

generalizes raw signals in terms of frequency but the amplitude. This means that the spectral 

amplitude of the generalized signals can differ from that in the raw signals as a result of the 

signal scaling in Step 2. 

Table 2. Signal generalization algorithm. 

Input: 
Raw signals {𝑣1(𝑡)}𝑡=1

𝑁s  and {𝑣2(𝑡)}𝑡=1
𝑁s  corresponding to motor speed 𝑛1, 𝑛2 ; 𝑁s  is the 

number of data points in one sample; The number of Fourier coefficients to be considered 

𝑁FFT; the maximum speed difference after generalization ∆𝑛max 

Output: 

Fourier coefficients {𝑐1sg}𝑛=1
𝑁FFT

 and {𝑐2sg}𝑛=1
𝑁FFT

 of the generalized signal 𝑣1sg(𝑡) and 𝑣2sg(𝑡) 

of 𝑣1(𝑡) and 𝑣2(𝑡), respectively. 

{𝑐1sg}𝑛=1
𝑁FFT FFT

←  𝑣1sg(𝑡)
signal scaling
←          𝑣1(𝑡) 

{𝑐2sg}𝑛=1
𝑁FFT FFT

←  𝑣2sg(𝑡)
signal scaling
←          𝑣2(𝑡) 

Algorithm procedure: 

Step 1: 

- Find a divisor 𝑛1sg of 𝑛1 and 𝑛2sg of 𝑛2 such that |𝑛1sg − 𝑛2sg| ≤ ∆𝑛max. 

- Define 𝑘1, 𝑘2 such that 

𝑛1 = 𝑘1 ∙ 𝑛1sg;  𝑛2 = 𝑘2 ∙ 𝑛2sg 

Step2: 

Scaling the raw signals: 
for i = 1: 𝑁s 
     for j = 1: 𝑘1 
            𝑣1sg(𝑖 ∙ 𝑘1 + 𝑗) = 𝑣1(𝑖); 
      end 

      for j = 1: 𝑘2 
            𝑣2sg(𝑖 ∙ 𝑘2 + 𝑗) = 𝑣2(𝑖); 
      end 

end 

Step 3: 

Taking Fourier interpolation of the generalized signals 

{𝑐1sg}𝑛=1
𝑁FFT FFT

←  𝑣1sg(𝑡) 

{𝑐2sg}𝑛=1
𝑁FFT FFT

←  𝑣2sg(𝑡) 
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Figure 4. Generalized characteristic fault frequencies corresponding to an outer raceway 

defect at two different motor speeds (KA04-KAt). 

Let’s take experiment KA04 in the dataset KAt as an example. 𝑁s is set to 64,000 data 

points, meaning that a sample of vibration raw signal measured in 1 (s) with the sampling 

frequency of 64 kHz is considered. 𝑁FFT is set to 2500 and 𝑛1sg = 𝑛2sg = 𝑛0 = 300 min−1. 

The gain 𝑘1 and 𝑘2 are 3 and 5, respectively. In this case, ∆𝑛max can be any arbitrary positive 

real number. The spectrum content of the generalized signals is shown in Figure 4. It is clearly 

observed there is no domain shift in the spectral content as in this case 𝑛1sg = 𝑛2sg is hold. It 

is also realized that the spectral content of the raw vibration signal corresponding to 𝑛1 =
900 min−1 (the bright orange in Figure 3(a)) is scaled in the factor of 𝑘1 = 3 (the bright orange 

in Figure 4). The same phenomenon is observed with the raw signal measured at 𝑛2 =
1500 min−1. 

3. MINIMAX ENTROPY DOMAIN ADAPTION 

In this section, the minimax entropy domain adaptation is presented. We verify the data 

cleaned by the proposed processing algorithm on various domain adaptation approaches. 

However, we focus on the minimax entropy strategy [20] for semi-supervised domain 

adaptation, in which the classification performance on the target domain is significantly 

improved by only using a minority of labeled target samples during the training process. By 

using the minimax entropy strategy, the representations of source and target domains can be 

aligned without requiring any domain adaptation component, such as a domain discriminator; 

thus, it can reduce the model complexity and computation time. The minimax strategy is divided 

into two specific stages. In the first stage, the model, including a feature extractor and a 

classifier, is trained on rich labeled samples from the source domain and a minority of labeled 

samples from the target domain as follows: 

ℒCls = 𝔼
(𝑥𝑖

l,𝑦𝑖
l)~𝒟l

∑1
[𝑘=𝑦𝑖

l]
log (𝐹 (𝐺(𝑥𝑖

l)))

𝐾

𝑘=1

      (8) 

where F(.) and G(.) are the classifier and feature extractor, respectively, (𝑥𝑖
l, 𝑦𝑖

l) is a pair sample 

and label in the labeled set, 𝒟l = 𝒟S ∪ 𝒟tl, where 𝒟S is the set of source data, and 𝒟tl is the set 

of labeled target data. The role of this stage is to estimate the prototypes represented by the 
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weights of the classifier. Then, the minimax strategy is conducted in the second stage. To be 

specific, the feature extractor is trained to minimize entropy on the unlabeled target data, in 

which the discriminative target representations can be achieved by clustering around the 

estimated prototypes. In contrast, the classifier is trained to maximize entropy on the unlabeled 

target data for domain adaptation, which encourages the feature extractor to generate unlabeled 

features similar to prototype generation. The entropy is computed on the unlabeled target 

samples as follows: 

𝐻 = −𝔼(𝑥𝑖
tu)~𝒟tu

∑𝑝(𝑦 = 𝑘|𝑥𝑖
tu)log

𝐾

𝑘=1

∑𝑝(𝑦 = 𝑘|𝑥𝑖
tu)

𝐾

𝑘=1

      (9) 

Where 𝑝(𝑦 = 𝑘|𝑥𝑖
tu) represents the probability of the sample 𝑥𝑖

tu to be predicted as class 

k. This probability is calculated by using a similarity-based between the extracted feature and 

each element of weight vectors as follows: 

𝑝(𝑦 = 𝑘|𝑥𝑖
tu) = softmax (

1

𝑇
𝐖T(𝐺(𝑥𝑖

tu)))    (10) 

where T is a temperature, 𝐖 = [𝐰𝟏, 𝐰𝟐, … ,𝐰𝐊] is a matrix including weight vectors of the 

cosine classifier, in which each 𝒘𝒊 represents the certain prototype of the i-th class. This process 

is depicted in Figure 5. 

4. EXPERIMENTS 

In this section, experimental results are presented to verify the effectiveness of the 

proposed fault classification framework. In our model, a five-layer 1-D CNN [19] was 

employed for the feature extractor, while a fully connected neural network was used for fault 

classification, as shown in Figure 6.  

4.1. Case study 1: KAt 

a) Dataset description 

KAt dataset was collected from a specific test rig as presented in [23]. There are 32 

experiments for testing healthy bearings, artificially damaged bearings, and accelerated 

damaged bearings. Each experiment has 20 files where each file contains 256,000 vibration 

data points resulting from a 4 s – 64 kHz data acquisition procedure. The damages in the faulty 

bearings are located in either the inner or the outer raceways, meaning that the KAt dataset has 

three classes. In addition, the test rig was operated under four conditions that differed from each 

other in terms of the motor speed, load torque and radial force. The four operating conditions 

are denoted by A, B, C and D, whose parameter settings are given in Table 3.  

To generate the data samples, the overlapping sliding windows procedure aiming to 

segment any time-dependent signals is used [19]. The window size and the shifting window are 

set to 16000 and 4000, respectively. The higher the window size, the better noise-free of the 

samples, but the more computational burden of the fault classification algorithm. The value of 

the shifting window is inversely proportional to the number of samples considered in the 
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training and testing phases. Generally, a higher number of samples provide more information 

for the fault classification algorithm, yet it requires more memory. 

 

Figure 5. Framework of the Minimax Entropy Domain Adaptation for fault diagnostic. 

 

Figure 6. Five layers 1D CNN feature extractor and Data preparation for KAt. 

As aforementioned, there are two types of faulty bearings: artificial and accelerated faulty 

bearing damages. This research work focuses on real accelerated damaged cases. For each 

working condition, one experiment for a healthy bearing, five experiments for inner raceway 

faults and five experiments for outer raceway faults are taken into account. In this configuration, 

there are 1200, 6000, 6000 samples for the healthy, the inner raceway faults and the outer 

raceway faults, respectively. Therefore, the total number of samples for each working condition 

A, B, C and D is 13200.  

It is observed in Table 3 that there are two operating speeds of the 

motor: 900 min−1 and  1500 min−1. The signal generalization algorithm can be conducted in 

a similar way as already presented in Section 2.2. The number of considered harmonics 𝑁FFT =
2500  that is much lower than the sample’s size. The graphical representation of the data 

preparation is depicted in Figure 7. 
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Table 3.   Working condition of KAt dataset. 

 
Figure 7. Data splitting for Case study 1 (KAt). 

Working 

condition 

(domains) 

Motor 

speed 

(min-1) 

Load 

torque 

(Nm) 

Radial 

force  

(N) 

A 900 0.7 1000 

B 1500 0.1 1000 

C 1500 0.7 400 

D 1500 0.7 1000 
 

b) Experimental results 

Experiments were conducted to highlight the effectiveness of the signal generalization and 

of the MME algorithms.  To evaluate the performance of the SGA, a comparison between the 

fault classification frameworks with and without the signal generalization is conducted. Figure 

7 shows the data split for each working condition, or each domain, where the number of 

examples for the evaluation process is set to 20 %. The number of labeled samples in each 

domain is set to 𝑎 % . The remaining samples are for the training dataset. Figure 7 also 

demonstrates an example of the cross-domain A → B where A is the source domain and B is 

the target domain. It is realized that the training phase uses the training samples in domain A 

and the labeled samples in domain B, while the evaluation process utilizes the only samples in 

domain B.  

Table 4 shows the evaluation of 12 cross-domain experiments without (RAW) and with the 

signal generalization algorithm (SGA) for five cases: 𝑎 =  1 %, 𝑎 =  0.7 %, 𝑎 =  0.5 %, 

𝑎 =  0.3 %,  and 𝑎 =  0.1 %. Each experiment is conducted three times to minimize the effect 

caused by data bias and inter-domain discrepancy. The average accuracy is calculated and given 

in column 𝐴𝑉𝐺. Overall, the SGA ensures an average accuracy considerably higher than that 

with raw signal: 78.71 % compared with 74.49 % for the case 𝑎 =  0.1 %  and 96.37 % 

compared with 88.80 % for the case 𝑎 =  1%. It is observed that the proposed framework 

provides a quite high average accuracy (86.22 %) even though there are just 40 samples (𝑎 =
 0.2 % ) with labels in the target domain used in the training phase. In this case, 5 samples 

belong to the healthy bearing and 20 samples belong to the inner and outer raceway defects.  

When 𝑎 =  0.1 %, the number of samples for the healthy condition becomes one. This is the 

main reason why the algorithm accuracy is lowered as one sample hardly represents a whole 

class of 1200 samples. 

Table 3 shows that domain A differs from the others in terms of motor speed. As already 

mentioned, domain discrepancies caused by the changing motor speed considerably affect the 

accuracy of the fault classification algorithm. This phenomenon is confirmed again in Table 4 

that the RAW experiments achieve lower accuracy for six cross-domain experiments related to 

domain A. To realize the effectiveness of the SGA, we denote 𝐴AVG as the average accuracy of 

six cross-domain experiments related to domain A. Table 4 demonstrates that the SGA provides 
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a higher average accuracy 𝐴AVG  in all cases respecting the value of  𝑎 . The value of 𝐴AVG 

associated with the SGA is at least 9.84 % (𝑎 =  0.5 %)  higher than that related to the RAW 

experiments.  

In addition to the algorithm precision, the training time, the computational burden and the 

size of the model are important factors when the fault classification framework is considered in 

practical application.  It is obvious that the SGA imposes the processor to carry out the signal 

scaling and the fast Fourier transform algorithm, but it reduces the size of the data samples 

greatly. For the above experiment, the sample size of the SGA is 𝑁FFT = 2500 that is much 

smaller than the original sample size of 16000. 

Table 4. KAT: Evaluation of the fault classification algorithm with and without the signal generation. 

The effectiveness of the MME method is verified by comparing its performance with that 

of the CDAN [26], DANN [27], and DAN [28]. It is well-known that CDAN, DANN and DAN 

are unsupervised domain adaptation methods while MME is a semi-supervised one. To make 

the comparison fair and meaningful, the datasets used to train and verify the MME, CDAN, 

DANN, and DAN are exactly the same. The comparison was also conducted for three cases: 

𝑎 =  0.1 %, 𝑎 =  0.3 % and 𝑎 =  0.5 %. It should be mentioned again that each experiment 

is carried out three times. The average accuracy is computed and shown in Figure 8. It is 

observed that the MME ensures a considerably higher accuracy than the three competing 

approaches. Compared with CDAN, the second-best method, the MM ’s accuracy surpasses 

8.65 % (93.15 % compared with 84.50 %) for the case a = 0.5 % and 0.97% (78.71 % compared 

with 77.74 %) for the case a = 0.1 %. 

 

Figure 8. Performance of the MME, CDAN, DANN and DAN for KAt dataset. 

𝑁𝑡
𝑙𝑎𝑏𝑒𝑙𝑒𝑑 Method 𝑨 → 𝑩 𝑨 → 𝑪 𝑨 → 𝑫 𝑩 → 𝑨 𝑩 → 𝑪 𝑩 → 𝑫 𝑪 → 𝑨 𝑪 → 𝑩 𝑪 → 𝑫 𝑫 → 𝑨 𝑫 → 𝑩 𝑫 → 𝑪 𝑨𝑨𝑽𝑮 𝑨𝑽𝑮 

132 

(a=1%) 

SGA 87.37 93.34 92.16 93.10 99.98 100 94.79 99.97 98.23 97.54 100 99.94 93.05 96.37 

RAW 85.05 75.25 87.71 71.49 98.85 100 65.60 100 100 85.32 100 96.36 78.4 88.80 

92 

(a=0.7%) 

SGA 70.49 91.02 94.47 94.24 99.97 100 91.83 99.99 99.78 91.69 100 99.97 88.96 94.45 

RAW 81.46 66.78 81.73 89.15 98.13 100 54.44 100 100 87.96 100 98.56 76.92 88.18 

66 

(a=0.5%) 

SGA 78.88 86.11 99.93 89.92 100 100 83.79 99.62 100 79.64 100 99.99 86.38 93.15 

RAW 72.69 72.94 81.91 81.45 98.01 100 67.58 100 100 82.67 100 98.15 76.54 87.95 

40 

(a=0.3%) 

SGA 88.21 67.42 84.64 75.81 84.15 100 72.67 99.99 93.81 75.85 100 92.10 77.43 86.22 

RAW 70.25 62.75 83.05 76.03 97.01 100 54.47 100 100 63.01 100 96.92 68.26 83.62 

13 

(a=0.1%) 

SGA 72.71 66.50 75.50 66.23 75.93 100 53.76 93.36 90.42 53.56 100 96.55 64.71 78.71 

RAW 56.81 51.45 57.43 53.42 87.37 100 54.73 100 96.53 46.97 100 89.16 53.47 74.49 
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Figure 9. Performance of the MME, CDAN, DANN and DAN for CWRU dataset. 

4.2. Case study 2: Case Western Reserve University Dataset (CWRU) 

a) Dataset description 

The CWRU dataset [29] was collected from the drive end equipped with a 2-hp electric 

motor. The faulty bearings were managed to have damages at the inner raceway (IF), outer 

raceway (OF), or ball bearings (BF). The test-bench was operated at specific load conditions 

ranging from 0 to 3 horsepower (HP), meaning that there are four domains denoted by E, F, G, 

H as shown in Table 5.  

The sampling rate for the data acquisition was set to 12 kHz. Table 5 shows that each 

domain (E, F, G, H) has 10 data subsets according to 10 working conditions of the bearings: 

one healthy and three faulty levels for the IR, OR and BF. Each data subset was obtained from 

a 10 (s) data acquisition procedure, resulting in 120,000 data points for each data subset. 

Similarly to case study 1, the overlapping sliding window procedure is applied, where the size 

of each sample is 12,000 data points and the shifting window is 500 data points. In this 

configuration, each domain has 2160 samples. The data splitting procedure is similar to that as 

depicted in Figure 7.  

One important characteristic of the CWRU dataset is associated with a stable motor speed 

that ranges from 1720 min-1 to 1797 min-1. Due to the small motor speed variation, the domain 

Table 5. Working condition of CWRU dataset. 

Working 

condition 

(domains) 

Load torque 

(hp) 
Fault types 

Fault size 

(inches) 

E 0 Normal, IF, OF, BF 0.007, 0.014,0.021 

F 1 Normal, IF, OF, BF 0.007,0.014,0.021 

G 2 Normal, IF, OF, BF 0.007,0.014,0.021 

H 3 Normal, IF, OF, BF 0.007,0.014,0.021 
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shift originated from the motor speed is insignificant, thus Steps 1 and 2 of the SGA can be 

omitted. The domain adaptation is now handled merely by the deep learning algorithm. 

b) Experimental results 

Experiments were also conducted with the CWRU dataset to verify the performance of the 

proposed fault classification framework. To examine the effectiveness of the SGA, 12 cross-

domain experiments based on the MME algorithm with either the raw data or the SGA were 

implemented. The average accuracy of the experiments is given in Table 6. It is clearly observed 

that the fault classification accuracy is high even in the cases where there are just a few labeled 

samples in the target domain used in the training phase. The uncritical domain shift in the 

CWRU is one of the main reasons for the result. Extensive experiments show that the MME 

method augmented with the SGA ensures a 100% accuracy when 𝑎 ≥ 1 %. For the case 𝑎 =
1 % there are only 22 labeled samples in the target domain to be used in the training process. 

Despite the small number of labeled samples, the framework still provides a 100% fault 

classification accuracy. When 𝑎 < 1 %, the proposed framework achieves the average accuracy 

of at least 98.5% for the case 𝑎 = 0 %, or in other words, the MME works in the unsupervised 

domain adaptation setting. Compared with the utilization of the raw samples whose size is two 

times as large as the SGA (12000 data points compared with 6000 Fourier coefficients) and the 

training time is 1.6 times longer (68.8 s with the raw signal compared with 41.2 s of the SGA), 

the accuracy of the proposed framework is slightly lower when 𝑎 < 1%. In these scenarios, the 

number of samples 𝑁𝑡
labeled < 22. The number of samples for the healthy condition can be 0 

or 1 that hardly represents the whole normal class.  

Table 6. CWRU: Evaluation of the fault classification algorithm with and without the signal generation. 

𝑁𝑡
𝑙𝑎𝑏𝑒𝑙𝑒𝑑 Method 𝑬 → 𝑭 𝑬 → 𝑮 𝑬 → 𝑯 𝑭 → 𝑬 𝑭 → 𝑮 𝑭 → 𝑯 𝑮 → 𝑬 𝑮 → 𝑭 𝑮 → 𝑯 𝑯 → 𝑬 𝑯 → 𝑭 𝑯 → 𝑮 𝑨𝑽𝑮 

22 

(a=1%) 

SGA 100 100 100 100 100 100 100 100 100 100 100 100 100 

RAW 100 100 100 97.5 100 99.77 100 100 99.09 98.4 100 100 99.56 

15 

(a=0.7%) 

SGA 100 100 100 100 100 100 100 100 100 100 100 100 100 

RAW 100 100 100 96.81 100 100 100 99.31 98.86 98.63 100 100 99.47 

11 

(a=0.5%) 

SGA 100 100 96.77 100 100 100 100 100 100 100 100 100 99.73 

RAW 100 100 100 95.30 100 100 100 100 98.18 99.54 100 100 99.42 

6 

(a=0.3%) 

SGA 100 100 100 88.96 100 100 100 100 100 100 100 100 99.08 

RAW 100 100 100 94.77 100 99.77 100 100 99.31 99.09 100 100 99.41 

0 

(a=0%) 

SGA 100 100 79.01 100 100 100 100 100 100 100 100 100 98.25 

RAW 100 100 100 95.04 100 100 100 100 97.86 99.77 100 100 99.39 

The second experiment is dedicated to the performance comparison of the MME, CDAN, 

DANN and DAN. The average accuracies of the 12 cross-domain experiments are shown in 

Figure 9. Compared with CDAN, the second-best method, the MM ’s accuracy surpasses at 

least 8.06 % for the case the four methods work in unsupervised condition (a = 0 %). The MME 

together with the SGA ensure a very high accuracy of 98.25 % even for the case a = 0 %. This 

fact confirms the effectiveness of the proposed diagnostic framework. 

5. CONCLUSIONS 

In this paper, a novel diagnostic framework for the detection of rolling bearing faults was 

presented. The framework is composed of a signal generalization algorithm and a semi-

supervised deep learning algorithm based on the minimax entropy domain adaptation. The 

signal generalization algorithm (SGA) processes the raw data in terms of rescaling and 
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representing it in the form of Fourier series.  The SGA was proven successfully to reduce the 

domain shift between the source and the target domains, especially in the case the datasets were 

obtained from different operational speed of the electrical motor, thus enhancing the prediction 

accuracy of the deep learning algorithm based on the MME with less computational time and 

less memory required for the implementation of the diagnostic framework. Experimental results 

with two published datasets confirm the outstanding performance of the proposed diagnostic 

framework. 
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