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Abstract. A Gaussian process regression (GPR) model for predicting the bond strength of 

FRP-to-concrete is proposed in this study. Published single-lap shear test specimens are used 

to predict the bond strength of externally bonded FRP systems adhered to concrete prisms. A 

database of 150 experimental results collected from published works is used for the training 

and testing phases of the proposed GPR model, containing 6 input parameters (width of 

concrete prism, concrete compressive strength, FRP thickness, FRP width, FRP length, and 

FRP modulus of elasticity). The output parameter of the prediction problem is bond strength. 

Three statistical indicators, namely the coefficient of determination, root mean square error 

(RMSE), and mean absolute error (MAE) are used to evaluate the performance of the 

proposed GPR model over 500 simulations. The results of this study indicate that the GPR 

provides an efficient alternative method for predicting the bond strength of FRP-to-concrete 

when compared to experimental results. 
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1. INTRODUCTION  

Currently, strengthening and repairing reinforced-concrete (RC) structures using 

externally bonded fiber-reinforced polymer  (FRP)  plates or sheets have become a widely 

accepted solution [1-3]. Several advantages of FRP materials, such as high strength and 

corrosion resistance, non-magnetic interference, and higher strength to weight ratio, lead to 
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reduced self-weight of the strengthened RC structures in comparison with those that use 

conventional steel reinforcement. Moreover, the high fatigue resistance makes them a viable 

alternative material to reinforce seismically deficient structures and also structures suffering 

from corrosion-related problems [4]. The externally bonded FRP plates can also be used to 

improve confinement in the compression members and increase the moment capacity of 

flexural members [5]. Furthermore, the high versatility and constructability of bonding FRP 

plates outside of concrete structures offers many advantages in civil and transport 

infrastructure applications because the FRP plates can be easily linked to structures with any 

cross-section [6]. However, the efficiency of FRP depends significantly on the bonding 

mechanism between FRP and concrete, which is controlled by several parameters such as the 

mechanical properties of concrete, FRP thickness, FRP modulus of elasticity, FRP length and 

width, and some other factors such as skillful labor, well treated and undamaged concrete 

surface or the epoxy quality [4]. Bonding failure is the most common type of failure in RC 

structures reinforced with external FRP plates [7]. As a result, extensive research on this topic 

has been carried out. Many experimental studies have been performed to investigate the bond 

strength using the single-lap shear tests [7-9]. In addition, theoretical studies using fracture 

mechanics analysis [10-12], and finite element analysis [13,14], and the development of 

empirical models [15, 16] have been proposed to study the bond strength of FRP-to-concrete 

joints. However, experimental and theoretical studies have to use several assumptions, as well 

as many limitations depending on each particular case, thereby losing its generality. 

Recently, the development and application of machine learning in the field of 

construction has been widely studied [17-21]. Taking advantage of the tested database, 

machine learning algorithms demonstrate the ability to simplify classical approaches, such as 

the method of testing or numerical simulation. Among machine learning algorithms, Gaussian 

Process Regression is an efficient and reliable learning approach for modeling complex and 

nonlinear function mappings [22, 23]. Accordingly, the objective of this study is to evaluate 

the capability of the Gaussian Process Regression for modeling the bond strength of FRP to 

concrete, based on a dataset of 150 experimental results collected in international journals. 

2. METHODS USED 

2.1. Gaussian Regression Process (GPR) 

Gaussian process regression (GPR) is a nonparametric, Bayesian approach applied to 

regression problems. GPR has several advantages, working well on small datasets and having 

the ability to provide uncertainty measurements on the prediction values.  

Given the training data set ( ) 
1

,
N

i i i
D X Y

=
= , where N is the training set's dimension, 

d

iX R represent for input data, 
iY R  is the corresponding output value. In data set D, 

random variables corresponding to input data set  
1

N

i i
X

=
 compose set 

( ) ( ) ( ) 1 2, ,..., Nf X f X f X  and are subjected to the joint Gaussian distribution. For the 

simplest case, the relation between the latent function f(X) and the observed target Y is: 

( ) ( ); .wTY f X f X X= + = ,  

where ( ) ( )2w N 0, ; 0,P nN : :  
(1) 

where w denotes the weight,  is the independent noise, 2

n is the variance of the noise, P 
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is covariance. The distribution in the Gaussian process is represented by a mean function, 

denoted as m(X), and a covariance kernel function, denoted as K(X, X') [24]: 

( ) ( ) ( ), , 'f X GP m X K X X  :  (2) 

where X and ' dX R  are random numbers of random variables. For the basic GPR, m(x) 

is set to be zero, and formula (1) can be rewritten as: 

( ) ( )0, , 'f X GP K X X  :  (3) 

where X is the learning sample whose measure in the GP is the finite-dimensional 

distribution of the GP. As defined by the GP, the finite-dimensional distribution is a joint 

normal distribution as: 

( ) ( ) ( ) ( )1 2, ,..., ,
T

nf X f X f X N m K   :  (4)  

The noise ε is free from f(x), and it is subject to the Gaussian distribution. When f(x) is 

an object of the Gaussian distribution, y is also subjected to the Gaussian distribution. Then, 

the prior distribution of the observed target value Y is inferred as: 

( )( )20, , nY N K X X I+:  (5)  

With given test sample points (X*, Y*), The joint probability distribution of observed 

target value Y and prediction value Y* at test points is expressed as: 

( ) ( )

( ) ( )

2 *

* * * *

, ,
0,

, ,

nK X X I K X XY
N

Y K X X K X X

  +            

:  (6)  

where K (X, X) = (Kij) is a positive defined symmetry matrix of size N N , Kij = K (Xi, 

Xj) are the elements in the matrix, respectively, to measure the correlation of Xi and Xj; K (X, 

X*) is the matrix of covariance of the training set and the testing set. 

Application the conditional distribution properties of the Gaussian distribution, an 

equation is proposed: 

( ) ( )( )* * * * *, , ,covp Y X Y X N Y Y Y=  (7)  

where: 

( ) ( )
1

* * 2, ,
T

nY K X X K X X I Y
−

 = +   (8)  

( ) ( ) ( ) ( ) ( )
1

* * * * 2 *cov , , , ,
T

nY K X X K X X K X X I K X X
−

 = − +   (9)  

the mean value 
*Y  is the estimation value of 

*Y ; ( )*cov Y  is the variance matrix of test 

samples, which reflects the estimation value's reliability. 

In the GPR, the covariance (Kernel) function is a critical factor, as it defines the 

similarity of the data, which has a significant impact on the prediction results [25]. In this 

study, the following five types of covariance functions are used for predicting the bond 

strength of FRP to concrete [26]: 
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Squared Exponential: 

( )
( ) ( )
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Rational quadratic: 
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Matern52: 
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Matern32: 
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, 1 expi j f
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K X X  

 

   
= + −    

   

 (13)  

Exponential: 

( ) 2, expi j f

l

r
K X X  



 
= − 

 
 (14)  

where “r” is the Euclidean distance between variables Xi and Xj: 

( ) ( )
T

i j i jr X X X X= − −  (15)  

and σl and σf are the characteristic length scale and the signal standard deviation, 

respectively. 

2.2. Hyper-parameters selection 

In the above GPR, given the introduction of noise, the variance function contains 

additional parameters that are termed as “Hyper-parameters”. Specifically, hyper-parameters 

in the Bayes method refer to parameters that control the distribution of model parameters, 

namely the parameters of a parameter [27]. Hyper-parameters corresponding to GPR include 

the following: 

- The first hyper-parameter denotes the variance 
2

n
 of noise ,  

- The second hyper-parameter denotes the covariance P of weight vector w, 

- The last hyper-parameter corresponds to parameters (l, f) that are included in the 

kernel function K(·,·). 

The results of several studies indicate that the fitting accuracy and generalization ability 

of GPR improved via selecting optimal hyper-parameters [28, 29].  

2.3. Performance criteria 

In this study, to evaluate the accuracy of predictive results, three different assessment 

metrics, namely the coefficient of determination (R2), root mean square error (RMSE), and 

mean absolute error (MAE) are utilized to compute the prediction errors of the proposed 
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model. The formulations are listed in equations (16) - (18), respectively. 

( )

( )

2
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1

1

N

j j
j

N

j j
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q q

=

=

 −
= −

 −
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 (16) 

( )
2

1

1 N

j j
j

RMSE q q
N =

=  −
)

 (17) 

1

1 N

j j
j

MAE q q
N =

=  −
)

 (18) 

where N is the number of samples, qj is the actual value; jq
)

 is the predicted value; jq  is 

the average of actual values. 

3. DATABASE CONSTRUCTION 

To build a predictive model of the bond strength of FRP-to-concrete, a database of 150 

test results is collected from the various documents [7-9, 30-34]. The input variables affecting 

the bonding force considered in this study include the width of concrete prism (I1), concrete 

cylinder compressive strength (I2), the width of FRP (I3), the thickness of FRP (I4), the elastic 

modulus of FRP (I5), and bond length (I6). In the collected database, the value of the width of 

concrete prism varies in the range of 100 - 228.2 mm, the concrete cylinder compressive 

strength is in the range 16 - 50 MPa, the width of FRP varies from 10 – 39.9 mm, the 

thickness of FRP ranges between 0.08 and 0.84 mm, the elastic modulus of FRP value varies 

from 83.03 to 300 MPa, and the bond length ranges from 50 - 150.6 mm. Besides, the bond 

strength of FRP-to-concrete values are in the range of 4.11 - 46.35 kN. The quantitative 

analysis of input and output parameters is detailed in Table 1. All the results are single-lap 

shear tests, and the beam test diagram is illustrated in Fig. 1. Among all the specimens in the 

database, 105 (70%) are randomly selected, used as training sets, and the remaining 45 

samples (30%) are used to investigate the accuracy of the trained GPR model. 

Table 1. Statistical analysis of the input and output variables used in this study. 

Variable Min Median Mean Max 
Standard 

deviation 
Skewness 

I1 100.000 150.000 161.348 228.200 40.633 -0.238 

I2 16.000 30.000 33.677 50.000 9.298 0.295 

I3 10.000 40.000 39.891 100.000 21.542 0.875 

I4 0.080 1.020 0.840 1.400 0.534 -0.182 

I5 83.030 152.200 177.995 300.000 58.554 0.132 

I6 50.000 150.000 150.593 300.000 70.919 0.718 

Y 4.110 11.240 14.784 46.350 9.866 1.352 



Transport and Communications Science Journal, Vol. 72, Issue 4 (05/2021), 411-422 

416 

Concrete

N

(a)

I1 I3
N

I6

(b)

 

Figure 1. Test specimen (a) side view (b) top view. 

The correlations between the inputs and bond strength of FRP-to-concrete is shown in 

Fig. 2. The correlation values are represented by different colors. It is observed that the 

correlations between the inputs and output are not strictly linear, with a maximum correlation 

value of about 0.5. So that all input variables are used to construct the GPR model. 

 

Figure 2. Multi-correlation graph of input and output variables used in this study. 

4. RESULTS AND DISCUSSION 

4.1. GPR prediction capability 

GPR model is used in this study to predict the bond strength. As mentioned above, the 

selection of hyper-parameters is crucial to obtain reliable and high accuracy outputs. Besides, 

the accuracy of GPR, or any machine learning algorithms, greatly depends on the selection 

process of the samples in the training dataset. Therefore, 500 simulations taking into account 

the random sampling effect, which randomly select 70% of the total data to generate the 

training dataset, are performed to fully evaluate the performance of the proposed GPR. During 

the simulation process, the hyper-parameters are automatically optimized and selected using 

Bayesian optimization by minimizing the out-of-sample mean square error in function of 

different cross-validation values. 

Fig. 3 shows the results of RMSE, MAE and R2 of the testing parts for a total of 500 
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simulations. It can be seen that the GPR model, using automatic hyper-parameters 

optimization, gives excellent prediction results. Indeed, the RMSE values of bond strength 

range mainly in the 2-3 (kN) range, the MAE values of bond strength range in the 1-2 (kN) 

range, whereas the R2 values are mostly found in the 0.93 to 0.99 range. 

Fig. 4a shows the results of the hyper-parameters selected by the Bayesian optimization 

process over 500 simulations. It can be seen that the kernel matern32 (Matern kernel with 

parameter 3/2) functions are mostly selected, following by the exponential kernel, the rational 

quadratic kernel function, kernel matern52, and squared exponential function. It is worth 

noticing that the ARD denotes that the use of the corresponding function but using a separate 

length scale per predictor. Fig. 4b shows the basis functions used in the simulation, where the 

pure quadratic function is mostly selected by the Bayesian optimization process, following by 

the choice that no basis function is used, linear function, and a constant as basis function. 

Finally, a small value (around 0) of sigma is preferred, whereas several values in the range of 

1 to 20 are selected by the optimization process (Fig. 4c). 

Finally, the statistical results of error indicators are presented in Table 2 for the training 

and testing datasets. 

 

Figure 3. A graph showing the best testing performance of GPR over 500 simulations, taking into 

account the random sampling effect for (a) RMSE, (b) MAE, and (c) R2. 



Transport and Communications Science Journal, Vol. 72, Issue 4 (05/2021), 411-422 

418 

 

 

 

Figure 4. A graph showing the GPR hyper-parameters selection results for (a) kernel function, (b) 

basis function, and (c) sigma values. 

Table 2. Statistical analysis results of R2, RMSE, and MAE distributions over 500 runs. 

 RMSE MAE R2 

Training dataset    

Max 3.333 2.538 0.974 

Average 2.340 1.657 0.942 

Min 1.596 1.130 0.890 

Testing dataset    

Max 3.493 2.568 0.985 

Average 2.306 1.643 0.945 

Min 1.250 0.901 0.882 
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4.2. GPR prediction performance  

In this section, the prediction results of GRP with the best predictive capacity over 500 

simulations are presented. Fig. 5a, b shows a strong correlation between predicted and actual 

bond strength values for the training and testing datasets through regression graphs, 

respectively. A linear fit is applied and plotted in each case. Besides, most of the predicted 

values of the training, testing datasets are close to the 95% confidence bounds. The values of 

the coefficient of determination are 0.934 and 0.985 for the training and testing datasets, 

respectively. It could be concluded that predicting the bond strength FRP-to-concrete is 

possible using the GPR model. 

 

Figure 5. Correlation results of actual and predicted bond strength values for the training dataset (a) 

and testing dataset (b) of GPR. 

The comparison between the experimental and predicted values of bond strength by GPR 

algorithm is shown in Fig. 6 for the training and testing datasets. The calculated values of 

RMSE are 2.538 and 1.25 (kN) for the training and testing datasets, respectively. Besides, the 

values of MAE are 1.842 and 0.901 (kN) for training and testing datasets in this case, 

respectively. These results show that the predicted values are very close to the experimental 

ones, showing the significant performance of GPR in predicting the bond strength of FRP-to-

concrete. 

 

Figure 6. Comparison of the predicted and actual results for the training and testing datasets. 
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The error histogram of the GPR algorithm is plotted for the training dataset (Fig. 7a) and 

testing dataset (Fig. 7b). The error values corresponding to the training and testing datasets 

are small, in general. Besides, based on the cumulative distribution (red line), the percentage 

error of the samples within a range can be easily determined. For example, with the training 

dataset, the percentage of samples with error in the range [-2; 2] kN is about 80%. Similarly, 

the 90% error between the experimental value and the GPR simulation of the testing data is 

about [-2; 2] kN. These error percentages show that the GPR algorithm is an excellent choice 

for quick estimation of the bond strength of FRP-to-concrete. 
  

 

Figure 7. Error for the training and testing datasets. 

5. CONCLUSION 

Gaussian process regression (GPR) is used in this research to develop a model that could 

predict the bond strength of FRP-to-concrete under direct pull-out tension. The GPR model is 

constructed using a database containing 150 test specimens, collected from the reliable 

literature. The model is developed using six input parameters that predominantly control the 

bond strength of FRP-to-concrete. These parameters are the width of concrete prism, concrete 

cylinder compressive strength, the width of FRP, the thickness of FRP, elastic modulus of 

FRP, and bond length. The performance evaluation of GPR model is carried on by common 

statistical measurements such as R2, RMSE, and MAE. This model shows high reliability in 

predicting the bond strength (R2 = 0.985, RMSE = 1.250, and MAE = 0.901). The results of 

this study can be used to quickly and accurately predict the bond strength of FRT-to-concrete, 

useful for engineers in the calculation and design processes. 
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