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Abstract. A Gaussian process regression (GPR) model for predicting the bond strength of
FRP-to-concrete is proposed in this study. Published single-lap shear test specimens are used
to predict the bond strength of externally bonded FRP systems adhered to concrete prisms. A
database of 150 experimental results collected from published works is used for the training
and testing phases of the proposed GPR model, containing 6 input parameters (width of
concrete prism, concrete compressive strength, FRP thickness, FRP width, FRP length, and
FRP modulus of elasticity). The output parameter of the prediction problem is bond strength.
Three statistical indicators, namely the coefficient of determination, root mean square error
(RMSE), and mean absolute error (MAE) are used to evaluate the performance of the
proposed GPR model over 500 simulations. The results of this study indicate that the GPR
provides an efficient alternative method for predicting the bond strength of FRP-to-concrete
when compared to experimental results.
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1. INTRODUCTION

Currently, strengthening and repairing reinforced-concrete (RC) structures using
externally bonded fiber-reinforced polymer (FRP) plates or sheets have become a widely
accepted solution [1-3]. Several advantages of FRP materials, such as high strength and
corrosion resistance, non-magnetic interference, and higher strength to weight ratio, lead to
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reduced self-weight of the strengthened RC structures in comparison with those that use
conventional steel reinforcement. Moreover, the high fatigue resistance makes them a viable
alternative material to reinforce seismically deficient structures and also structures suffering
from corrosion-related problems [4]. The externally bonded FRP plates can also be used to
improve confinement in the compression members and increase the moment capacity of
flexural members [5]. Furthermore, the high versatility and constructability of bonding FRP
plates outside of concrete structures offers many advantages in civil and transport
infrastructure applications because the FRP plates can be easily linked to structures with any
cross-section [6]. However, the efficiency of FRP depends significantly on the bonding
mechanism between FRP and concrete, which is controlled by several parameters such as the
mechanical properties of concrete, FRP thickness, FRP modulus of elasticity, FRP length and
width, and some other factors such as skillful labor, well treated and undamaged concrete
surface or the epoxy quality [4]. Bonding failure is the most common type of failure in RC
structures reinforced with external FRP plates [7]. As a result, extensive research on this topic
has been carried out. Many experimental studies have been performed to investigate the bond
strength using the single-lap shear tests [7-9]. In addition, theoretical studies using fracture
mechanics analysis [10-12], and finite element analysis [13,14], and the development of
empirical models [15, 16] have been proposed to study the bond strength of FRP-to-concrete
joints. However, experimental and theoretical studies have to use several assumptions, as well
as many limitations depending on each particular case, thereby losing its generality.

Recently, the development and application of machine learning in the field of
construction has been widely studied [17-21]. Taking advantage of the tested database,
machine learning algorithms demonstrate the ability to simplify classical approaches, such as
the method of testing or numerical simulation. Among machine learning algorithms, Gaussian
Process Regression is an efficient and reliable learning approach for modeling complex and
nonlinear function mappings [22, 23]. Accordingly, the objective of this study is to evaluate
the capability of the Gaussian Process Regression for modeling the bond strength of FRP to
concrete, based on a dataset of 150 experimental results collected in international journals.

2. METHODS USED
2.1. Gaussian Regression Process (GPR)

Gaussian process regression (GPR) is a nonparametric, Bayesian approach applied to
regression problems. GPR has several advantages, working well on small datasets and having
the ability to provide uncertainty measurements on the prediction values.

Given the training data set D:{(xi,Yi)}iN:l, where N is the training set's dimension,
X, € R represent for input data, Y, eR is the corresponding output value. In data set D,

random  variables corresponding to input data set {Xi}iN:1 compose  set
{f(Xy), f(X;),. f(Xy)} and are subjected to the joint Gaussian distribution. For the
simplest case, the relation between the latent function f(X) and the observed target Y is:
Y=f(X)+e f(X)=X"w,
1)
where w: N(0,%,);e: N(0,07)
where w denotes the weight, ¢ is the independent noise, o is the variance of the noise, Zp
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Is covariance. The distribution in the Gaussian process is represented by a mean function,
denoted as m(X), and a covariance kernel function, denoted as K(X, X") [24]:

f(X): GP[m(X),K(X,X")] 2)

where X and X 'e R? are random numbers of random variables. For the basic GPR, m(x)
is set to be zero, and formula (1) can be rewritten as:

f(X): GP[0,K(X,X"] 3)

where X is the learning sample whose measure in the GP is the finite-dimensional
distribution of the GP. As defined by the GP, the finite-dimensional distribution is a joint
normal distribution as:

[0 £ (%) F(X)] 2 N(mK) @

The noise ¢ is free from f(x), and it is subject to the Gaussian distribution. When f(x) is
an object of the Gaussian distribution, y is also subjected to the Gaussian distribution. Then,
the prior distribution of the observed target value Y is inferred as:

Y N(0,K(X,X)+0o7l) (5)

With given test sample points (X*, Y*), The joint probability distribution of observed
target value Y and prediction value Y* at test points is expressed as:

{Y] \ 'K(X,X)+ofl K(X,X")

i K(X"X)  K(X"Xx") ©)

Y

where K (X, X) = (Kj) is a positive defined symmetry matrix of size Nx N, Kjj = K (X,

X;j) are the elements in the matrix, respectively, to measure the correlation of X; and X;; K (X,
X*) is the matrix of covariance of the training set and the testing set.

Application the conditional distribution properties of the Gaussian distribution, an
equation is proposed:

p(Y7[X,Y,X") =N (Y[, cov(Y")) @)

where:
Y =K (X, X ) [K(X,X)+a?1 ]y (8)
cov(Y")=K (X", X) =K (X, X") [K(X,X)+0?1 ] K(X,X") )

the mean value Y is the estimation value of Y"; cov(Y*) is the variance matrix of test
samples, which reflects the estimation value's reliability.

In the GPR, the covariance (Kernel) function is a critical factor, as it defines the
similarity of the data, which has a significant impact on the prediction results [25]. In this
study, the following five types of covariance functions are used for predicting the bond
strength of FRP to concrete [26]:
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Squared Exponential:

K(Xi,Xj‘G)zafexp _%<Xi_xj) (Xi_xj) (10)

2
O

Rational quadratic:

2 —-a
K(X;,X,|0)=07 (1+20!O'|2J (11)
Matern52:
o, fBr sr? 5r
K(Xi,Xj‘H)—O'f(l+?+gjexp{—?} (12)
Matern32:
K(Xi,Xj‘e)zaf(1+ﬂjexp{—ﬁ} (13)
0, O,
Exponential:
r
K(X.,X.|0)=0c%exp| ——
( i j‘ ) O-f p|: O'|:| (14)

where “r” is the Euclidean distance between variables X and X;:
T
rz\/(xi—xj) (X, =X;) (15)

and o1 and or are the characteristic length scale and the signal standard deviation,
respectively.

2.2. Hyper-parameters selection

In the above GPR, given the introduction of noise, the variance function contains
additional parameters that are termed as “Hyper-parameters”. Specifically, hyper-parameters
in the Bayes method refer to parameters that control the distribution of model parameters,
namely the parameters of a parameter [27]. Hyper-parameters corresponding to GPR include
the following:

2
- The first hyper-parameter denotes the variance “n of noise &,

- The second hyper-parameter denotes the covariance P of weight vector w,

- The last hyper-parameter corresponds to parameters (o1, of) that are included in the
kernel function K(,-).

The results of several studies indicate that the fitting accuracy and generalization ability
of GPR improved via selecting optimal hyper-parameters [28, 29].

2.3. Performance criteria

In this study, to evaluate the accuracy of predictive results, three different assessment
metrics, namely the coefficient of determination (R?), root mean square error (RMSE), and
mean absolute error (MAE) are utilized to compute the prediction errors of the proposed
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model. The formulations are listed in equations (16) - (18), respectively.
N

,-z_l<qj _211)2

RE=1-F— (16)
El(qj -q;)

RMSE = \/%%(qj -4,) (17)

MAE _i & | (18)

where N is the number of samples, g; is the actual value; dj
the average of actual values.

3. DATABASE CONSTRUCTION

To build a predictive model of the bond strength of FRP-to-concrete, a database of 150
test results is collected from the various documents [7-9, 30-34]. The input variables affecting
the bonding force considered in this study include the width of concrete prism (l1), concrete
cylinder compressive strength (I2), the width of FRP (13), the thickness of FRP (l4), the elastic
modulus of FRP (Is), and bond length (le). In the collected database, the value of the width of
concrete prism varies in the range of 100 - 228.2 mm, the concrete cylinder compressive
strength is in the range 16 - 50 MPa, the width of FRP varies from 10 — 39.9 mm, the
thickness of FRP ranges between 0.08 and 0.84 mm, the elastic modulus of FRP value varies
from 83.03 to 300 MPa, and the bond length ranges from 50 - 150.6 mm. Besides, the bond
strength of FRP-to-concrete values are in the range of 4.11 - 46.35 kN. The quantitative
analysis of input and output parameters is detailed in Table 1. All the results are single-lap
shear tests, and the beam test diagram is illustrated in Fig. 1. Among all the specimens in the
database, 105 (70%) are randomly selected, used as training sets, and the remaining 45
samples (30%) are used to investigate the accuracy of the trained GPR model.

is the predicted value; @ is

Table 1. Statistical analysis of the input and output variables used in this study.

Variable Min Median Mean Max Standqrd Skewness
deviation
I1 100.000 | 150.000 161.348 228.200 40.633 -0.238
12 16.000 30.000 33.677 50.000 9.298 0.295
I3 10.000 40.000 39.891 100.000 21.542 0.875
I4 0.080 1.020 0.840 1.400 0.534 -0.182
Is 83.030 | 152.200 177.995 300.000 58.554 0.132
le 50.000 | 150.000 150.593 300.000 70.919 0.718
Y 4.110 11.240 14.784 46.350 9.866 1.352
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Figure 1. Test specimen (a) side view (b) top view.

The correlations between the inputs and bond strength of FRP-to-concrete is shown in
Fig. 2. The correlation values are represented by different colors. It is observed that the
correlations between the inputs and output are not strictly linear, with a maximum correlation
value of about 0.5. So that all input variables are used to construct the GPR model.

Width of concrete prism
Concrete compressive strength
Width of FPR 05

Thickness of FRP

Elastic modulus of FRP

Length of bond |

Bond strength -

L L I 1, I I Y

-0.5

Figure 2. Multi-correlation graph of input and output variables used in this study.
4. RESULTS AND DISCUSSION
4.1. GPR prediction capability

GPR model is used in this study to predict the bond strength. As mentioned above, the
selection of hyper-parameters is crucial to obtain reliable and high accuracy outputs. Besides,
the accuracy of GPR, or any machine learning algorithms, greatly depends on the selection
process of the samples in the training dataset. Therefore, 500 simulations taking into account
the random sampling effect, which randomly select 70% of the total data to generate the
training dataset, are performed to fully evaluate the performance of the proposed GPR. During
the simulation process, the hyper-parameters are automatically optimized and selected using
Bayesian optimization by minimizing the out-of-sample mean square error in function of
different cross-validation values.

Fig. 3 shows the results of RMSE, MAE and R? of the testing parts for a total of 500
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simulations. It can be seen that the GPR model, using automatic hyper-parameters
optimization, gives excellent prediction results. Indeed, the RMSE values of bond strength
range mainly in the 2-3 (kN) range, the MAE values of bond strength range in the 1-2 (kN)
range, whereas the R? values are mostly found in the 0.93 to 0.99 range.

Fig. 4a shows the results of the hyper-parameters selected by the Bayesian optimization
process over 500 simulations. It can be seen that the kernel matern32 (Matern kernel with
parameter 3/2) functions are mostly selected, following by the exponential kernel, the rational
quadratic kernel function, kernel matern52, and squared exponential function. It is worth
noticing that the ARD denotes that the use of the corresponding function but using a separate
length scale per predictor. Fig. 4b shows the basis functions used in the simulation, where the
pure quadratic function is mostly selected by the Bayesian optimization process, following by
the choice that no basis function is used, linear function, and a constant as basis function.
Finally, a small value (around 0) of sigma is preferred, whereas several values in the range of
1 to 20 are selected by the optimization process (Fig. 4c).

Finally, the statistical results of error indicators are presented in Table 2 for the training
and testing datasets.

70 : (@) : : 70 — : (b)

60 |
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240
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207
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RMSE MAE
(c)
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RZ

Figure 3. A graph showing the best testing performance of GPR over 500 simulations, taking into
account the random sampling effect for (a) RMSE, (b) MAE, and (c) R?.
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Figure 4. A graph showing the GPR hyper-parameters selection results for (a) kernel function, (b)
basis function, and (c) sigma values.

Table 2. Statistical analysis results of R?, RMSE, and MAE distributions over 500 runs.

RMSE MAE R?

Training dataset

Max 3.333 2.538 0.974
Average 2.340 1.657 0.942
Min 1.596 1.130 0.890
Testing dataset

Max 3.493 2.568 0.985
Average 2.306 1.643 0.945
Min 1.250 0.901 0.882
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4.2. GPR prediction performance

In this section, the prediction results of GRP with the best predictive capacity over 500
simulations are presented. Fig. 5a, b shows a strong correlation between predicted and actual
bond strength values for the training and testing datasets through regression graphs,
respectively. A linear fit is applied and plotted in each case. Besides, most of the predicted
values of the training, testing datasets are close to the 95% confidence bounds. The values of
the coefficient of determination are 0.934 and 0.985 for the training and testing datasets,
respectively. It could be concluded that predicting the bond strength FRP-to-concrete is
possible using the GPR model.

a b
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Figure 5. Correlation results of actual and predicted bond strength values for the training dataset (a)
and testing dataset (b) of GPR.

The comparison between the experimental and predicted values of bond strength by GPR
algorithm is shown in Fig. 6 for the training and testing datasets. The calculated values of
RMSE are 2.538 and 1.25 (kN) for the training and testing datasets, respectively. Besides, the
values of MAE are 1.842 and 0.901 (kN) for training and testing datasets in this case,
respectively. These results show that the predicted values are very close to the experimental
ones, showing the significant performance of GPR in predicting the bond strength of FRP-to-
concrete.
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Figure 6. Comparison of the predicted and actual results for the training and testing datasets.
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The error histogram of the GPR algorithm is plotted for the training dataset (Fig. 7a) and
testing dataset (Fig. 7b). The error values corresponding to the training and testing datasets
are small, in general. Besides, based on the cumulative distribution (red line), the percentage
error of the samples within a range can be easily determined. For example, with the training
dataset, the percentage of samples with error in the range [-2; 2] kN is about 80%. Similarly,
the 90% error between the experimental value and the GPR simulation of the testing data is
about [-2; 2] KN. These error percentages show that the GPR algorithm is an excellent choice
for quick estimation of the bond strength of FRP-to-concrete.
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Figure 7. Error for the training and testing datasets.
5. CONCLUSION

Gaussian process regression (GPR) is used in this research to develop a model that could
predict the bond strength of FRP-to-concrete under direct pull-out tension. The GPR model is
constructed using a database containing 150 test specimens, collected from the reliable
literature. The model is developed using six input parameters that predominantly control the
bond strength of FRP-to-concrete. These parameters are the width of concrete prism, concrete
cylinder compressive strength, the width of FRP, the thickness of FRP, elastic modulus of
FRP, and bond length. The performance evaluation of GPR model is carried on by common
statistical measurements such as R?, RMSE, and MAE. This model shows high reliability in
predicting the bond strength (R? = 0.985, RMSE = 1.250, and MAE = 0.901). The results of
this study can be used to quickly and accurately predict the bond strength of FRT-to-concrete,
useful for engineers in the calculation and design processes.
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