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Abstract. The paper presents the studies on the free vibration of a rectangular plate with one 

or more cracks. The plate thickness varies along the x-axis with linear rules. Using Shi's third-

order shear deformation theory and phase field theory to set up the equilibrium equations, 

which are solved by finite element methods. The frequency of free vibration plates is 

calculated and compared with the published articles, the agreement between the results is 

good. Then, the paper will examine the free vibration frequency of plate depending on the 

change of the plate thickness ratio, the length of cracks, the number of cracks, the location of 

cracks and different boundary conditions. 
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1. INTRODUCTION  

Variable thickness could affect the design of the plate structure as it allows to adjust the 

stiffness in the most stressed areas in the plate while keeping the weight constant. The 

problem with the vibration of plate with variable thickness is studied by many authors. T. 

Sakiyama and M. Huang [1] employed the approximate method which was based on the 

Green function to investigate the free vibration of thin and moderate thick rectangular plates 

with arbitrary variable thickness. Using the polynomial and harmonic differential quadrature 
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methods, Malekzadeh et al. [2] analyzed free vibration of variable thickness thick skew plates. 

I. Shufrin and M. Eisenberger [3] determined the free vibration of shear deformable plates 

with variable thickness using the first-order shear deformation plate theory of Mindlin 

(FSDT) and the higher-order shear deformation plate theory of Reddy. The FSDT and the 

exact element method were employed by Efraim et al. [4] to analyze the exact vibration of 

variable thickness thick annular isotropic and FGM plates. Gupta et al. [5] studied the free 

vibration of non-homogeneous circular plates of variable thickness using FSDT. Vahid et al. 

[6] investigated three-dimensional free vibration of thick circular and annular isotropic and 

functionally graded plates with variable thickness along the radial direction based on the 

linear, small strain and exact elasticity theory. Michele Bacciocchi [7] used the Generalized 

Differential Quadrature method to study the free vibration of several laminated composite 

doubly-curved shells, singly-curved shells and plates with continuous thickness variation. 

The cracks may appear in the plate at the manufacturing stage or in the process of 

exploitation and use. The stiffness of the plate is then greatly reduced. The theories of 

research on cracks have been studied by many scientists. Recently, phase field theory has 

been used to simulate the state of cracks. Using the phase field theory, Phuc et al. [9] studied 

the stability of cracked rectangular plate with variable thickness, Duc et al. [10] determined 

free vibration and buckling of cracked Mindlin plates, Phuc et al. [11] analyzed the effect of 

cracks on the stability of the functionally graded plates with variable-thickness, Phuc [12] 

investigated the free vibration of the functionally graded material cracked plates with varying 

thickness. 

According to the author’s knowledge, there are no researches on the free vibration of 

multi-cracked plates with variable thickness, the plates are made of homogeneous material. 

The survey affects of the aspect ratio of the plate; the length, angle, position and number of 

cracks on free vibration frequency are also investigated. 

2. BASIC EQUATIONS 

2.1. Plate theoretical model 

According to the new simple third-order shear deformation plate theory of Shi [13] for 

harmonic motion, the displacement field is taken as 
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Where 1 2 3
  u u u, ,  are represents the displacements at the mid-plane of the plate in the 

, ,x y z  directions, respectively. While  
x y

 ,  are the transverse normal rotations of 

the x and y  axes.  

Since the plate thickness varies along the x-axis with the function h(x), the strains related 
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to displacements in equation (1) can be rewritten as 
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 (2) 

The relationship of the normal and shear stress with respect to the strains and shear 

components in the plate, which is constrained by linear elasticity theory, is given by: 
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It should be noted that equation (3) are denoted 
(0) (1) (3) (0) (2); ; ; ;ε ε ε γ γ for the strain and 

shear components induced from equations (2) of the displacements in the plate [13]. 

The normal forces, bending moments, higher order moments and shear forces can be 

computed and written through the following equations: 
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According to the theory of elasticity, strain energy U for plate can be given by: 
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2.2. Crack modeling and phase field theory 

In the phase field theory of fracture mechanics [9-12], the state of the material is 

represented by the field variable s, which is 0 if there is a crack and 1 if the material is 

undamaged. With s is in the range of 0 to 1, the material is in a softening state, which is the 

transition state of the material between the normal state and the cracked state. Hence, s can be 

considered as a damage parameter in elastic damage models. This parameter s is considered a 

variable in the functional energy formula by 2 ,s so cracks in the plate can occur when the 

deformation energy is decreased. 

When the plate is cracked, the total strain energy of plate due to the normal forces, 

bending moments, higher order moments and shear forces could be written as 
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where d  is used to denote the displacement vector, and CG  is used for the critical energy 

release rate in Griffith’s theory and l  is a positive regularization constant to adjust the size of 

the fracture zone. 
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The kinetic energy of the plate: 
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Based on the above expression, the Lagrangian function for plates can be expressed as 

follows: 
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The first variation of the functional ( ),dL s  is particularly computed by  
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Continuously, eigenvalue and shape functions are given by the equation: 
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(15) 

After calculating the value s from equation (15), it is easy to calculate the free vibration 

frequency of the plate in equation (14). 
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3. NUMBERICAL RESULTS AND DISCUSSION 

3.1. Verification 

3.1.1. Comparison of the free vibration of rectangular plates with the thickness varying 

according to the first order function 

In this section, the free vibration of homogeneous plates is studied and compared to 

Shufrin [3]. The properties of the plate are: 0.5 , 70 , 0.3,L H m E GPa = = = =  
32700 / .kg m =  The plate thickness varies according to the first-order function 

0(1 / )h h x L= − with 
0 0( ) / .ah h h = −  The plates are described by a symbolism defining 

the boundary conditions at their edges starting from 0x =  to ,x L= 0,y = .y H=  For 

example, SSCF denotes a plate with simply supported edges at 0x =  and ,x L=  clamped at 

0,y =  and free at .y H=  The formula to determine the free vibration frequency parameter 

of the plate can be written as [3]: 

                                2 2

0 0/ /H h D   =  where 3 2

0 0 / (12(1 )).D Eh = −  (16) 

Table 1. The free vibration frequency factor for homogeneous plate with  

the first-order varying thickness. 

BC h0/L Shufrin [3] Phuc [12] Present 

SSSS 

0.1 1.4504 1.45041 1.45029 

0.2 1.3738 1.37381 1.37343 

0.4 1.1664 1.16645 1.16557 

SSFF 

0.1 0.7201 0.72019 0.720108 

0.2 0.6999 0.69996 0.699842 

0.4 0.6368 0.63676 0.636470 

3.1.2. Comparison of free vibration of cracked plates  

In this section, the free vibration of cracked homogeneous plates is studied. The 

properties of plate same as section 3.1.1. The crack length ratios as 

/ 0.1, 0.2, 0.3, 0.4, 0.5,0.6c L = were investigated to examine the convergence of the 

presented method.  The formula to determine the free vibration frequency parameter of the 

plate is defined as [8]: 

                                     
2 /H h D  =  where 3 2/ (12(1 )).D Eh = −  (17) 



Transport and Communications Science Journal, Vol. 71, Issue 7 (09/2020/), 853-867 
 

859 

Table 2. The free vibration frequency parameter of cracked plates with constant thickness. 

c/L Source 
Mode 

1 2 3 4 5 

0.1 
Huang et al. [8] 19.66 49.34 49.35 78.96 97.79 

Present 19.5875 49.2907 49.2909 78.7505 96.9168 

0.2 
Huang et al. [8] 19.33 49.19 49.32 78.95 94.13 

Present 19.2408 49.0522 49.2695 78.6747 93.396 

0.3 
Huang et al. [8] 18.85 48.5 49.24 78.89 89.73 

Present 18.7537 48.2213 49.1636 78.5378 89.2382 

0.4 
Huang et al. [8] 18.29 46.65 49.03 78.61 85.56 

Present 18.1988 46.3424 48.9381 78.1554 85.4286 

0.5 
Huang et al. [8] 17.72 43.06 48.69 77.72 82.18 

Present 17.643 43.3373 48.5765 77.1341 82.3518 

0.6 
Huang et al. [8] 17.19 37.99 48.22 75.59 79.6 

Present 17.1395 39.8011 48.1085 74.9304 80.0119 

As can be seen from sections 3.1.1 and 3.1.2, the calculation results are very close to the 

comparison articles. Here, in Tables 1 and 2, to ensure the convergence program, the finite 

element number of the square plate is divided as 20x20 elements. Therefore, we develop a 

calculation program based on the code of those sections to calculate the free vibration 

frequencies of the cracked plates with varying thickness in section 3.2 below. 

3.2. Free vibration analysis of cracked homogeneous plates with varying thickness 

 
a) The plate with a crack  

b) The multi-cracked plate 

Figure 1. Geometry of cracked plate with varying thickness according to the first-oder function. 

Based on the theories and comparisons of above sections, the cracked rectangular plates 

are presented in this section. The plates have one or more cracks (as shown in Fig. 1). The 
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thickness of plates is according to the first-order function with and the ratio of the crack 

length (c/L) is varying from 0.1 to 0.7; the properties of plates are provided in section 3.1.1. 

At the edges of the plate, the boundary condition is full simple support (SSSS). The non-

dimensional free vibration frequency of the plates is defined by Eq. (16). 

Table 3. The free vibration frequency parameters of cracked plates with 

L=H=0.5m;
0h =0.025m; a 0h = h /2 and SSSS. 

c/L 
Inclined 

crack ( )  

Mode 

1 2 3 4 5 

0 - 1.47224 3.59279 3.63005 5.78802 6.92957 

0.2 

00 1.43401 3.56406 3.6209 5.75805 6.63099 

150 1.4342 3.56295 3.61947 5.7506 6.65452 

300 1.43482 3.56075 3.61538 5.73714 6.70905 

450 1.43604 3.56012 3.60921 5.73268 6.76311 

600 1.43754 3.60158 3.56303 5.7425 6.79087 

750 1.44051 3.57369 3.59398 3.75886 6.80685 

900 1.43938 3.58789 3.57195 5.76517 6.78172 

0.4 

00 1.35719 3.31802 3.59063 5.6159 6.11886 

150 1.35605 3.31291 3.58742 5.5613 6.22099 

300 1.35434 3.30255 3.57927 5.49011 6.39549 

450 1.35565 3.29813 3.57134 5.47624 6.46517 

600 1.36106 3.30991 3.56764 5.53235 6.36044 

750 1.37631 3.44598 3.56876 5.66773 6.38494 

900 1.3696 3.2977 3.56679 5.69252 6.03496 

0.6 

00 1.28081 2.65944 3.52979 5.21767 5.73978 

150 1.27456 2.66753 3.5175 5.13433 5.86067 

300 1.2619 2.66678 3.48855 5.00535 6.05457 

450 1.25782 2.68542 3.46993 4.95243 6.14677 

600 1.27118 2.78237 3.48051 5.03414 5.9492 

750 1.32 3.34583 3.51283 5.50157 6.14798 

900 1.29284 2.67201 3.50712 5.14022 5.41946 
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In Table 1, the effect of the crack length (c/L) and the slope angle of the crack (  ) on the 

frequency of the vibration modes is different. With the increase of the cracked angle  : 

While the vibration frequency in Mode 5 increases and then decreases, Modes 3 and 4 are 

opposite (decrease and then increase); in Modes 1 and 2, the frequency has no clear rule, 

Mode 1 increases and then decreases at c/L = 0.2 but decreases and then increases at c/L = 0.4 

and c/L = 0.6, Mode 2 decreases and then increases at c/L = 0.2 and c/L = 0.4 but increase and 

then decrease at c/L = 0.6. We also found that the larger the ratio of crack length (c/L), the 

lower the stiffness of the plate reduces the vibration frequency, which is also shown in Tables 

4, 5, 6 and Fig. 2, 3. 

Fig. 2 describes the first shape modes of central-cracked rectangular plate with changing 

thickness and cracked angle from 00 to 900. 

   

   

 

 

 

Figure 2. The first mode shapes of SSSS cracked plates with 

L = H = 0.5m; c / L = 0.5; 0h = 0.025m; a 0h / h = 0.50.  

Fig. 3 shows that the vibration frequency decreases as the aspect ratio of the plate (L/H) 

increases. This is explained by the fact that when a constant edge (H=0.5m) is made, the 

larger the L/H is, the less the plate stiffness is reduced. The vibration frequency of the plate 

also decreases in proportion to the decrease in the thickness ratio (ha/h0), (ha/h0 decreases 

corresponding to the increase of variable thickness ratio  ). 



Transport and Communications Science Journal, Vol. 71, Issue 7 (09/2020), 853-867 

862 

  

  

Figure 3. The frequency parameter of cracked plate with change of aspect ratio and thickness ratio. 

Table 4 shows the first vibration frequency parameter of the cracked plate (one crack) 

with variable thickness and the edges of the plates are full single supported (SSSS) or fully 

clamped (CCCC). It is clear that with full single supported boundary condition, the plate 

stiffness is smaller than the full clamped and therefore the frequency is also correspondingly 

smaller. The plate stiffness also decreases as the thickness ratios (h0/ha) and the crack length 

ratio (c/L) increase, causing the frequency to decrease accordingly. 

Table 4. The free vibration frequency parameter of cracked plates with different boundary 

conditions and L = H = 0.5m; 0h = 0.025m; 00 . =  

Boundary 

conditions 0/ah h  
c/L 

0 0.1 0.3 0.5 0.7 

SSSS 

0.9 1.88401 1.8671 1.77912 1.66969 1.5835 

0.8 1.78432 1.76857 1.68616 1.58311 1.50161 

0.7 1.68274 1.66827 1.59183 1.49561 1.41906 

0.6 1.5789 1.56582 1.49586 1.407 1.33573 

0.5 1.47224 1.46069 1.39778 1.31696 1.25138 
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CCCC 

0.9 3.37417 3.34238 3.18261 3.02511 2.94805 

0.8 3.19799 3.16837 3.01837 2.86938 2.79585 

0.7 3.01501 2.98788 2.8488 2.709 2.63888 

0.6 2.82395 2.79966 2.67284 2.54308 2.47628 

0.5 2.62294 2.60189 2.48895 2.37033 2.30678 

In tables 5 and 6, the plate has three cracks parallel to the y-axis, the length of cracks c, 

spaced d and apart from the edge d0 (Fig. 1). 

Table 5. The first frequency parameter of the plates with three cracks and 

L H 0.5m;= = 0h 0.01m;= SSSS.  

c/H d/L 
0/ah h  

0.9 0.8 0.7 0.6 0.5 

0.2 

0.1 1.80313 1.70814 1.61256 1.51618 1.41859 

0.2 1.80006 1.70471 1.60827 1.51051 1.41103 

0.3 1.81593 1.71913 1.62075 1.52044 1.41766 

0.4 1.83352 1.73592 1.63685 1.5359 1.43236 

0.4 

0.1 1.67085 1.58395 1.49732 1.41093 1.32465 

0.2 1.64669 1.56012 1.47296 1.3851 1.29638 

0.3 1.6561 1.5682 1.47888 1.38781 1.29453 

0.4 1.68053 1.59167 1.50153 1.40963 1.31516 

0.6 

0.1 1.55463 1.47374 1.39293 1.3122 1.23151 

0.2 1.50052 1.42185 1.34239 1.26201 1.18059 

0.3 1.47991 1.40201 1.32266 1.24156 1.15824 

0.4 1.48806 1.41 1.33054 1.24926 1.16537 

We see that the first vibration mode of the plates occurs near the center of the plate 

(slightly skewed towards the thinner thickness as Fig. 2). Therefore, the more the cracks in the 

first mode occur, the lower the frequency is. In Table 5, with d/L= 0.2 (at c/H = 0.2 and 

c/H=0.4) and d/L=0.3 (at c/H = 0.6), the plate with the lowest frequency where the cracks are 

concentrated (the cracks are located near where the first mode occurred).  
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Table 6. The first frequency parameter of multi-cracked plates with different boundary conditions 

and L H 0.5m;= = 0h H / 50;= c / L 0.50.=  

Boundary 

conditions 
d/L 

0/ah h  

0.9 0.8 0.7 0.6 0.5 

SSFF 

0.1 0.715312 0.676524 0.636443 0.594771 0.551069 

0.2 0.703904 0.665488 0.625531 0.583696 0.539506 

0.3 0.724817 0.685 0.64334 0.599424 0.552662 

0.4 0.755852 0.714429 0.671157 0.625587 0.577036 

CSFF 

0.1 1.25969 1.21907 1.17665 1.13196 1.08424 

0.2 1.21396 1.16738 1.11861 1.06728 1.0129 

0.3 1.18137 1.13178 1.07995 1.02539 0.967431 

0.4 1.15633 1.11055 1.06286 1.01262 0.958782 

CCFF 

0.1 1.84462 1.74572 1.64441 1.54023 1.43255 

0.2 1.82632 1.72676 1.62286 1.51321 1.39727 

0.3 1.73849 1.64598 1.55036 1.45078 1.34581 

0.4 1.57965 1.49738 1.41404 1.32927 1.2423 

Table 6 describes the frequency parameters of multi-cracked plates with different 

boundary conditions. At the edges of the plates, the boundary conditions are described 

according to the following rule: The CSFF describes the clamped (C) and simply supported 

(S) boundary conditions in the y-direction and the free (F) boundary conditions in the x-

direction. We find that the plates with CCFF boundary conditions have the largest stiffness, so 

its vibration frequency is also the largest. In contrast, the plates with SSFF boundary 

conditions have the smallest frequency. That is understandable, because the bound of the 

clamped boundary condition (C) is stronger than the simple supported (S) and the free 

boundary condition (F) has no binding of edges. 

Fig. 4 describes the first five vibration mode shapes of multi-cracked rectangular plate 

with changing the thickness along the length of the plate and different boundary conditions. 
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Figure 4. The first five mode shapes of multi-cracked plates with different boundary conditions 

and
0L H 0.5m; h 0.01m;= = = a 0h / h 0.5;= c / H 0.5;= d / L 0.30.=  

4. CONCLUSIONS 

This paper is based on the new third-order shear deformation theory, phase field theory 

and finite element method to calculate the vibration frequency parameters of cracked 

homogeneous plates with the varying thickness. From the detailed numerical results, the 

following can be concluded: 

➢ The length and number of cracks increase which increases the flexibility in the 

plate and hence the frequency decreases.  

➢ As the slope of the crack increases, the frequencies can decrease or increase. 

➢ The ratio between the two edges of the plate increases, leading to reduction 

stiffness of plate, so the vibration frequency decreases. 

➢ The smaller the thickness ratio (
0/ah h ) is, the smaller the frequency is. Especially 

with the effect of simultaneous increase of / ,L H /c L and
0 / ah h the plate 

stiffness decreases more, so the vibration frequency decreases rapidly. 

➢ The plate with the clamped boundary conditions have a greater stiffness than the 

simply supported plate or free plate and the corresponding frequencies is also 

greater. 

This result will open new potential research of free vibration plates with the propagation 

of cracks. 

 

ACKNOWLEDGMENT 

This research is funded by University of Transport and Communications (UTC) under grant number 

T2020-CB-006.  

 

REFERENCES 

[1]. T. Sakiyama, M. Huang, Free vibration analysis of retangular plates with variable thickness, 

Journal of Sound and Vibration, 216 (1998) 268–286. https://doi.org/10.1006/jsvi.1998.1732 

[2]. P. Malekzadeh, G. Karami, Polynomial and harmonic differential quadrature methods for free 

vibration of variable thickness thick skew plates, Engineering Structures, 27 (2005) 1563-1574. 

https://doi.org/10.1006/jsvi.1998.1732


Transport and Communications Science Journal, Vol. 71, Issue 7 (09/2020/), 853-867 
 

867 

https://doi.org/10.1016/j.engstruct.2005.03.017 

[3]. I. Shufrin , M. Eisenberger, Vibration of shear deformable plates with variable thickness – first-

order and higher-order analyses, J Sound Vib, 290 (2006) 465-489. 

https://doi.org/10.1016/j.jsv.2005.04.003 

[4]. U.S. Gupta, R. Lal, Seema Sharma, Vibration of non-homogeneous circular Mindlin plates with 

variable thickness, Journal of Sound and Vibration, 302 (2007) 1–17. 

https://doi.org/10.1016/j.jsv.2006.07.005 

[5]. E. Efraim, M. Eisenberger, Exact vibration analysis of variable thickness thick annular isotropic 

and FGM plates, Journal of Sound and Vibration, 299 (2007) 720-738. 

https://doi.org/10.1016/j.jsv.2006.06.068 

[6]. V. Tajeddini, A. Ohadi, M. Sadighi, Three-dimensional free vibration of variable thickness thick 

circular and annular isotropic and functionally graded plates on Pasternak foundation, International 

Journal of Mechanical Sciences, 53 (2011) 300-308. https://doi.org/10.1016/j.ijmecsci.2011.01.011 

[7]. M. Bacciocchi, M. Eisenberger, N. Fantuzzi, F. Tornabene, E. Viola, Vibration analysis of 

variable thickness plates and shells by the generalized differential quadrature method, Composite 

Structures, 156 (2016) 218-237. https://doi.org/10.1016/j.compstruct.2015.12.004 

[8]. C.S. Huang, A.W. Leissa, C.W. Chan, Vibrations of rectangular plates with internal cracks or 

slits, International Journal of Mechanical Sciences, 53 (2011) 436-445. 

https://doi.org/10.1016/j.ijmecsci.2011.03.006 

[9]. P.M. Pham, D.V.Thom, D.H. Duc, N.D. Duc, The stability of cracked rectangular plate with 

variable thickness using phase field method, Thin-Walled Structures, 129 (2018) 157-165. 

https://doi.org/10.1016/j.tws.2018.03.028 

[10]. H.D. Duc, V.D. Thom, P.M. Pham, N.D. Duc, Validation simulation for free vibration and 

buckling of cracked Mindlin plates using phase-field method, Mech Adv Mater Struct, 26 (2018) 

1018-1027. https://doi.org/10.1080/15376494.2018.1430262 

[11]. P.M. Pham, N.D. Duc, The effect of cracks on the stability of the functionally graded plates with 

variable-thickness using HSDT and phase-field theory, Composites Part B: Engineering, 175 (2019) 

107086. https://doi.org/10.1016/j.compositesb.2019.107086 

[12]. P. M. Pham, Anynasys free vibration of the functionally graded material cracked plates with 

varying thickness using the phase-field theory, Transport and Communications Science Journal, 70 

(2019) 122-131. (in Vietnamese) https://doi.org/10.25073/tcsj.70.2.35 

[13]. G. Shi, A new simple third-order shear deformation theory of plates, International Journal of 

Solids and Structures, 44 (2007) 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031 

 

https://doi.org/10.1016/j.engstruct.2005.03.017
https://doi.org/10.1016/j.jsv.2005.04.003
https://doi.org/10.1016/j.jsv.2006.07.005
https://doi.org/10.1016/j.jsv.2006.06.068
https://doi.org/10.1016/j.ijmecsci.2011.01.011
https://doi.org/10.1016/j.compstruct.2015.12.004
https://doi.org/10.1016/j.ijmecsci.2011.03.006
https://doi.org/10.1016/j.tws.2018.03.028
https://doi.org/10.1080/15376494.2018.1430262
https://doi.org/10.1016/j.compositesb.2019.107086
https://doi.org/10.25073/tcsj.70.2.35
https://doi.org/10.1016/j.ijsolstr.2006.11.031

