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Abstract. Critical depth is a depth of flow where a specific energy section is at a minimum 

value with a flow rate. Critical depth is an essential parameter in computing gradually varied 

flow profiles in open channels and in designing culverts. If cross-sections are rectangular or 

triangular, the critical depth can be computed by the governing equation. However, for other 

geometries such as trapezoidal, circular, it is totally difficult to find a solution, because the 

governing equations are implicit. Therefore, the approximate solution could be determined by 

trial, numerical or graphical methods. These methods tend to take a long time to find an 

approximate solution, so a simple formula will be more convenient for consultant hydraulic 

design engineers. The existing formulas are bascially simple, but the relative error between 

the approximate solutions and true values can reach 9% or greater. This article presents new 

explicit regression equations for the critical depth in a partially full circular culvert. The 

proposed formula is quite simple, and the relative maximum error is 3.03%. It would be very 

useful as a reference for design in conduit engineering. 
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1. INTRODUCTION 

Critical depth plays an important role in hydraulics engineering, agricultural irrigation, 

and sewerage works design. Critical flow is the transition or control flow that possesses the 

minimum specific energy with a flow rate. When the actual water depth is greater than critical 
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depth, subcritical occurs which is mild flow. Conversely, it is supercritical flow which is steep 

flow [1-4]. 

Roadway culverts are usually rectangular or circular in cross-section, but circular-shaped 

culverts are widely used for roadway drainage and agricultural irrigation due to their excellent 

hydraulic properties and convenient construction.  

The governing equations for the critical depth in a circular culvert are complicated 

implicit equations and not able to find the analytical solutions. The following methods are 

used for determining the critical depth: trial; numerical and graphical methods [3,9-10], but 

these methods tend to take a long time to find an approximate solution. Hydraulic engineers 

need a more simple formula for more convenience in designing consultants. Some existing 

formulas are simple, but the relative error between the approximate solutions and true values 

is quite high, can reach 9% or greater. Therefore, the proposed formula for critical depth in a 

partially full circular culvert is established using the curve fitting method while considering 

non-dimensional parameters. The proposed formula would be useful as a reference for design 

in conduit engineering. 

2. METHODOLOGY 

2.1. Basic theory of critical depth formula 

Specific energy is the energy at a cross-section of open channel flow with respect to the 

channel bed. The concept of specific energy is very useful in defining critical water depth and 

in the analysis of open channel flow [1-3]. 

                    
 

= + = +
2 2

22 2

v Q
E h h

g gA
 (1)  

where E is specific energy at the cross-section (m), h is water depth (m);  is the coefficient 

of kinetic energy (Coriolis coefficient) (-), range value from 1.10 to 1.20 for regular channels 

[3] (engineers usually assume alpha equal to 1.0 for designing purposes), g is gravitational 

acceleration, g = 9.81 (m/s2); Q is the flow discharge (m3/s), A is flow area (m2). 

 

Figure 1. Specific energy diagram. 

When the specific energy (E) is minimum, it is known as the critical flow condition and 

corresponding critical depth (hc) (Figure 1). Differentiating eq. (1) with respect to h (in case Q 

= constant) and equating to zero, the governing critical flow equation is defined. 
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

=  =
2

2

3
1 r 1

Q
B F

gA
 (2)  

where B is top width of water surface (m), Fr is Froude number, =Fr
v

gh
 [4,9]. 

On basic of eq. (2), the governing equation for computation of critical depth is described: 

       


=
2 3
Q A

g B
 (3)  

The parameters , Q, g are constant, the values of A and B depend upon the value of h. If 

eq. (3) is correct, the critical depth is found. 

2.2. Characteristics of typical channel cross-sections 

The common cross-sections such as rectangular, triangular, trapezoidal and circular are 

classified according to the following parameters: flow area (A), wetted perimeter (P), 

hydraulic radius (R = A/P) and top width (B). Table 1 summarizes typical open channel flow 

cross-sections. 

Table 1. Open channel geometries. 

Cross-section shapes A (m2) P (m) B (m) 

 
Rectangular 

bh  + 2b h  B  

 
Triangular 

2
mh  + 22 1h m  2mh  

 
Trapezoidal 

( )+

+
= 1 2

2

h b mh

m m
m

 
+ + +

+ +

2
1

2
2

1

1

b h m

h m

 

+

+
= 1 2

2

2

b mh

m m
m

 

 
Circle 

( ) − 
2

sin
8

D
 

2

D
 


sin

2
D  

In Table 1, b is bottom width (m), m is side slope [-],  is central angle (rad) and D is the 

culvert diameter. 

2.3. Computation of critical depth 

If cross-section types are rectangular and triangular, the analytical solutions can be found. 

Substituting for A and B from Table 1 into eq. (3), the critical depth formula is as follows: 
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

=
2

3
2recc

Q
h

gb
  (rectangular section) (4)  

                   


=
2

5
2

2
tric

Q
h

gm
 (triangular section) (5)  

However, if cross-section types are trapezoidal and circular, it would be not found the 

analytical solutions. Hence, the approximate solutions could be determined by trial and 

graphical methods or using semi-empirical equations for the estimation of critical depth hc 

[7,8]. 

Hoang Nam Binh [1] proposed Agroskin's critical depth formula form in the trapezoidal 

open channel with application range = 0 4recc
mh

b
: 

            r r

2

0 1 2

  
 = + +    

  

ec ec

tra rec

c c

c c

mh mh
h h c c c

b b
  (trapezoidal section) (6)  

where: 

0 1 2

1
1.000; ; 0.105

3
= = − =c c c  in the case of = 0 1recc

mh

b
 

0 1 2

1
0.939; ; 0.031

5
= = − =c c c  in the case of = 1 2recc

mh

b
 

0 1 2

2
0.878; ; 0.013

15
= = − =c c c  in the case of = 2 3reccmh

b
 

0 1 2

2
0.818; ; 0.007

21
= = − =c c c  in the case of = 3 4reccmh

b
 

There are some semi-empirical equations for the circular section: 

              
ir

0.25
2

0.26

1.01
cc

Q
h

gD

 
=   

 

  (Straub [7]) (7)  

              
ir

0.085
3 15

6
0.77 1

cc

g D
h D

Q

−
 

= +  
 

  (Swamee [8]) (8)  

     
ir

0.5

0.25 0.25

10.022
0.52 3.726

0.26 1.30 1.863 9.315

0.9584

D
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−
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Q
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  (Vatankhah [10]) (9)  

        
ir

0.1156
2.1135 10.5675 2.1 10.5

4.227 4.2

D D
1 13.6 13

−
 

= + −  
 

cc

g g
h D

Q Q
  (Vatankhah [10]) (10)  
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ir

0.115
2.1454 10.727 2.1 10.5

4.2908 4.2

D D
1 3.83 3.2

−
 

= + −  
 

cc

g g
h D

Q Q
  (Shang [6]) (11)  

Eq. (7) and (8) are quiet simple form of formula. In order to evaluate the accuracy of the 

formulas, the eq. (7) and (8) were applied by calculating 
ircch  with D = 0.5 - 4.0m and value 

of discharge Q so that hc/D = 0.1 - 0.90. Substituting these values into eq. (3) and then 

calculating relative error  (%) by eq. (12): 

                  = (LS(3) - RS(3))/RS(3) (12)  

where: LS(3) is left-hand side of eq. (3), RS(3) is right-hand side of eq. (3). 

Error analysis results are shown in Figure 2. The relative error of eq. (7) is divergence 

and the maximum error is 19.96%. So, eq. (7) does not meet the requirements for culvert 

design. The maximum relative error of eq. (8) is 5.06%, and suitable application condition is 

hc  D/2. 
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Figure 2. Error analysis of  

the simple formula type (7) and (8). 
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Figure 3. Error analysis of  

the complex formula type (9), (10) and (11). 

 Eq. (9), (10) and (11) are the more complex formula forms than eq. (7) and (8), in which 

eq. (9) is the most complex form with an application range hc/D  0.92. Eq. (9) was proposed 

by Vatankhah in 2010 and then Vatankhah developed a method of calculating the critical 

depth in a circular cross-section and prosposed a new semi-empirical formula (10) in 2011 

[10]. Shang et al [6] applied the PSO algorithm in MATLAB to optimize the value of 

parameters and proposed the formula (11). Eq. (10) and (11) have the same application range 

hc/D < 1.00. When hc/D  0.85, the maximun relative errors () are less than 1%. The highest 

precision is eq. (11). However, when hc/D > 0.85 the relative error may be increased and 

exceed the target error when hc/D > 0.95 (Figure 3). 

2.4. Method of establishing the formula 

Substituting for A and B from Table 1 with the circular section into eq. (3) to get 

governing equation of critical depth (13): 

             

( )
 

 −   
  

= =


3
2

2 3
sin

8

sin
2

D

Q A

g B
D
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                
( ) − 

=


33 2

5

sin8

sin
2

Q

gD
 (13)  

On the other hand, from the circular culverts diagram in Table 1, it is easy to recognize 

that: 

         
 

= − 
 

cos 1 2
2

h

D
 (14)  

 So            
 

 = −  
 

ir2ar os 1 2 cc
h

cc
D

 (15)  

and             
  

= −  
  

ir 1
1 cos

2 2

cc
h

D
 (16)  

2.4.1. Graphical method 

Given Q and D, draw a relationship curve between h and E (similar to Figure 1) from eq. 

(1) by changing h = h + h, where A in eq. (1) is determined by the formula in Table 1. The 

extreme point of the curve corresponds to h is the critical depth. The accuracy of the solution 

depends on the resolution of the curve. The more h decreases, the more the resolution of the 

curve increases, leading to a more accurate solution. However, it would take a long time to 

calculate. Conversely, the calculation time can be reduced but the approximate solution does 

not match the actual solution. In addition, if the design plan is changed, the relationship curve 

must be redrawn according to the new parameter. Therefore, this method is not convenient for 

consultant hydraulic design engineers. 

2.4.2. Trial and numerical methods 

From the governing equation of critical depth (13), the algorithm to determine critical 

depth is as follows (Figure 4): 

 

Figure 4. The flow chart to solve the governing equation. 
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The growth in computing power has revolutionized the use of realistic mathematical 

models. Numerical approximation for the governing equation by the algorithm shown in 

Figure 4 to solve the above equation for  and then for hc. The approximate solution obtained 

by numerical method has a very high accuracy ( could be 0.001 or less), and takes very little 

time to calculate. However, the coding ability is a major barrier for many consultant hydraulic 

design engineers. 

Users can apply trial method to find critical depth as shown in Table 2. 

Table 2. Calculating critical depth by trial method. 

h (m) LS(13)  (rad) RS(13)  Note 

h1 LS(13) 1 (RS(13))1 1 True/False 

… … … … … … 

hn LS(13) n (RS(13))n n True/False 

First, a value of h is assumed and then defining the values LS(13) by left-hand side of eq. 

(13),  by eq. (15), RS(13) by right-hand side of eq. (13) and  = (LS(13) – RS(13))/RS(13). If 

LS(13) > RS(13) then the value of h must be increased. Otherwise, the value of h must be 

decreased. Until  less than or equal target error (defined by the user, usually taken as 0.05), 

then the note column in Table 2 is True and the critical depth is found. The accuracy of 

solution and calculation time depends on user experience and target error. 

2.4.3. Curve fitting method 

The curve fitting method is the way that a series of data points are modelled or 

represented by assigning the “best fit” function along with the entire range. The curve fitting 

method refers to a regression analysis of the relationship between a dependent variable and 

one or more independent variables. When a relationship is approximated by a straight line, it 

is called linear regression. When the relationship is a curve form, it is called nonlinear 

regression or curve fitting. The study used the Microsoft Excel regression analysis tool to find 

the equation that best fits the data sets by using the “least squares” method. Excel’s built-in 

regression types include linear, polynomial, logarithmic, exponential, and power function. 

By equations (13), (12) and (16), there are two relation curves to establish the formula 

with an application range  ir0 1.0cc
h

D
: 

( ) − 




3
sin

~

sin
2

  
 

 =   
 

3 2

5

8 Q
f

gD
 (see Figure 5) (17)  
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and    
ir

3 2

5

8
~cc

h Q

D gD
  

 
=   

 

ir

3 2

5

8cc
h Q

f
D gD

 (see Figure 6) (18)  
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Figure 5. The relation curve between   

and right-hand side (RS) of eq. (13). 
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Figure 6. The relation curve between hc/D  

and right-hand side (RS) of eq. (13). 

Regression analysis eq. (17) and (18) with curve fitting method, the proposed formula 

type 1 and type 2 yield the following form: 

 Type 1:      ( )( )=
ir

cos ,
cc

h F Q D  (19)  

 Type 2:      ( )=
ir

,
cc
h F Q D  (20)  

3. RESULTS 

3.1. Formula type 1 

Apply the logarithmic transformation of the independent variable and divide the relation 

curve eq. (17) into 2 parts, hc  D/2 and hc > D/2, the actual curves are shown in Figure 7 ( = 

0  ) and Figure 8 ( =   2). 

y = 0.9818e
0.1427x

R
2
 = 0.9990
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ln(100RS) (-)


 (

ra
d

)

Actual curve

Expon. (Actual curve)

 

Figure 7. The relation curve between   

and logarithmic right-hand side (RS) of eq. (13) 

with hc  D/2. 
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Figure 8. The relation curve between   

and logarithmic right-hand side (RS) of eq. (13) 

with hc > D/2. 
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Using curve fitting method, the regression equation of relation curve eq. (17) are 

established in the exponential function. The R-squared value is approximately 1.0. 

   
  

 =     
  

3 2

5

8
0.9818exp 0.1427ln 100

D

Q

g
  (with hc  D/2) (21)  

and   
  

 =     
  

3 2

5

8
0.6531exp 0.1938ln 100

D

Q

g
  (with hc > D/2) (22)  

The dashed curves in Figure 7 and Figure 8 draw trendline eqs. (21) and (22) 

respectively. Substituting for  from eqs. (21) and (22) into eq. (16) the formula type 1 to 

calculate the critical depth in the circular culvert is obtained. 

 
= −  

 
 

2

ir 3
1cos

2 2c

c

c c

D D Q
h c

D
 (23)  

where c1, c2 and c3 are constants 

 If hc  D/2 then c1 = 1.6654, c2 = 0.2854 and c3 = 0.7135. 

 If hc > D/2 then c1 = 1.7161, c2 = 0.3876 and c3 = 0.9691. 
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Figure 9. Error analysis of the critical depth formula type 1. 

The relative error of eq. (23) is shown in Figure 9. The maximum relative error is 10.5%. 

The suitable application condition is 0.55  hc/D  0.95 and the maximum error in the 

application range is 3.05%. 

3.2. Formula type 2 

Relation curve eq. (18) is drawn by changing . The left-hand side (LS) of eq. (18) is 

calculated by eq. (16) and the right-hand side (RS) of eq. (18) is calculated by eq. (13). This 

relation curve is shown in Figure 10 (actual curve), in which, the horizontal axis value is 

ln(100RS). 
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Figure 10. The relation curve between  and logarithmic right-hand side (RS) of eq. (13). 

Calculating the least squares fit through points, the regression equation of relation curve 

eq. (18) is obtained 

     
  

=     
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ir

3 2

5

8
0.0634exp 0.2567ln 100

D

cc
h Q

D g
   

     
 

=   
 

ir

0.2567
3 2

5

8
0.0634 100

D

cc
h Q

D g
 (24)  

Transforming eq. (24), the formula type 2 to calculate the critical depth in circular culvert 

yields the following form eq. (25): 

=
cir

0.5126

0.2815
0.5697

D
c

Q
h  (25)  

The relative error of eq. (25) is shown in Figure 11. If hc/D  0.80, the maximum relative 

error is 3.03%. When hc/D > 0.80, the error increases quite quickly. Thus, eq. (25) is suitable 

for application within hc/D  0.80. 
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Figure 11. Error analysis of the critical depth formula type 2.  
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In order to expand application range, the proposed formula eq. (26) uses both eq. (23) and 

(25). The procedure for using eq. (26) is shown in Figure 12. 

         


=  




  = −    
 

ir

ir

0.5126

0.2815

0.3876

0.9691

0.5697 (in the case of 0.05 0.80)
D

os 1.7161 (in the case of  0.80 0.95)
2 2

c

c

c
c

c
c

hQ
h

D

hD D Q
h c

DD

 (26)  

From Figure 12, it could be seen that the critical depth in circular culvert is calculated by 

eq. (25), if ch

D
  0.8 then the critical depth is found, otherwise it is calculated by eq. (23). The 

error analysis of the proposed formula is shown in Figure 13. 

 

Figure 12. The critical depth determination algorithm applies to proposed formula. 
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Figure 13. Error analysis of the proposed critical depth formula for circular section. 
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Table 3. Comparing proposed formula to others. 

Author's formula Maximum relative error (%) Application range Note 

Straub [7] 19.96% (Figure 2) hc/D  0.85 eq. (7) 

Swamee [8] 5.06% (Figure 2) hc/D  0.90 eq. (8) 

Proposed 3.03% (Figure 13) hc/D  0.95 eq. (26) 

The three formulas to calculate the critical depth in circular culvert, which are shown in 

Table 3. Eq. (7) have the maximum relative error that can reach to 20%. The accuracy of eq. 

(8) is higher than eq. (7) with an application range hc/D  0.90. However, in the case of  hc/D 

= 0.95, the maximum relative error of eq. (8) can exceed 9%. For example, if Q = 1.55m3/s 

and D = 0.75m then hc = 0.717m, hc/D = 0.95 and  = 9.05%. 

From Figure 13, it could be seen that the application range of the proposed formula in this 

article is hc/D  0.95 and the maximum relative error is 3.03%. In general, the proposed 

formula has the ability to determine the critical depth in a circular culvert with higher 

accuracy and wider application range than Straub's and Swamee's formulas. 

4. CONCLUSION 

Critical depth is an important parameter in culvert designing and it is normally 

determined by trial and graphical methods for circular sections. However, these methods often 

take a long time to calculate and can cause errors that exceed the target error. The semi-

empirical equations are more convenient for designers, but the accuracy of those does not 

meet the requirements in hydraulic engineering. This article presents the governing equation 

for computation of the critical depth and the curve fitting method to establish proposed 

formula. The eq. (26) is a quite simple formula. The critical depth in the circular culvert can 

be easy computed in practical with practical range of depth hc/D  0.95 and maximum 

percentage error less than the target error for design in conduit engineering. 
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