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Abstract. Autonomous landing of rotary wing type unmanned aerial vehicles is a challenging 

problem and key to autonomous aerial fleet operation. We propose a method for localizing the 

UAV around the helipad, that is to estimate the relative position of the helipad with respect to 

the UAV. This data is highly desirable to design controllers that have robust and consistent 

control characteristics and can find applications in search – rescue operations. AI-based neural 

network is set up for helipad detection, followed by optimization by the localization 

algorithm. The performance of this approach is compared against fiducial marker approach, 

demonstrating good consensus between two estimations.  
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1. INTRODUCTION  

Unmanned Aerial Vehicles have become an essential force in development of smart cities 

and are playing a more prominent role in various economic and social activities, such as tele-

sensing, agriculture, package delivery and aerial photography. Despite recent advances in 

sensor, control and mass deployment of artificial intelligence on-board, autonomous landing 

is a challenging problem that associates with significant risk of aircraft loss and is key to the 

fully autonomous UAV fleet operation, which is advantageous in the employment of UAV for 

continuous missions, such as food and package delivery, atmospheric information collection. 

https://doi.org/10.25073/tcsj.71.7
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The landing of a rotary wing UAV on a helipad is challenging can be attributed to the 

difficulty in localizing the landing target to a precision level that often exceeds what can be 

delivered by satellite-based navigation systems. This is particularly difficult for small UAVs, 

operating in urban area where localization signal is interfered due to surrounding 

constructions. Solutions often rely on visible light cameras as they are available en-mass 

onboard UAVs today. Compared to other sensors such as RADAR, LIDAR, SONAR… the 

camera is compact, low-cost but it also requires a lot of computation in order to run computer 

vision algorithms on-board. These algorithms should be robust to fluctuating ambient lighting 

condition and adaptable to different helipad designs, while maintaining low computational 

complexity as a too complex algorithm may burn out the power and computational resources 

of a typical UAV computer – which is often very limited. 

In this paper, we address a problem of detecting the helipad using RGB images from a 

visible light camera and infer the localization information, which include the relative distance 

from the UAV to the helipad. This information is in real-world metric scale and highly 

desirable for feedback control of UAVs, as opposed to projected pixel distance on the image 

plane of the camera. The latter suffers from the scale problem and gives different controller 

performance for different UAV altitude. We also make use of the aircraft attitude which is 

given by an Inertial Measurement Unit (IMU) filtered data – carried out by either Extended 

Kalman Filter or Complementary Filter instead of inferring this data from the helipad pattern 

(such as fiducial marker as helipad approaches). This makes the approach much more simple 

while retaining the effectiveness. 

2. RELATED WORK 

Several approaches are available regarding the detection of landing targets, including 

autonomous landing using specific and non-specific targets. For specific target methods, [1], 

[2] and [3] proposed specially designed helipad involving patterns of colors and a specialized 

object detector to detect the position of the helipad in the image. A PID controller then 

regulates the position of the UAV based on distance to the helipad in the image plane to zero. 

In [4], two colored discs are used as a landing target, which can be detected by a blob detector 

and 2 color filters. In [5], a non-specific landing target is proposed which is a box with an X 

letter in it. Instead of using color filters, the paper turned to detector that employed local 

features. This approach is much more robust to variance in ambient lighting and also to 

arbitrary scale and rotation. However, if the image contrast is not sufficient, the approach 

might suffer from degradation in performance as not enough features are captured to match 

with the predefined template. 

In [6], the authors used a number of AprilTag, which is a fiducial marker family that is 

designed for improved processing time and estimation accuracy for camera’s pose. The 

measurement data extracted from camera images is augmented with IMU, fused together by 

an Extended Kalman Filter.  

Recently, with the progress of Machine Learning, object detection has reached new 

standards thanks to the extreme robustness of convolutional neural networks (CNNs) to 

ambient lighting, scale, rotation, perspective transformation and even distortions. The network 
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can learn from simple features to more advanced, abstract features that present in the 

template. In [7], a single convolutional network was used for both object detection and UAV 

control tasks and achieved an impressive success rate of around 80%. A popular CNN 

network design called YOLOv3 was reconfigured and applied to object detection, coupled 

with a profile checker for validation against false positives and a Kalman filter to improve 

tracking performance [8]. 

3. PROBLEM FORMULATION 

3.1. Frames 

We denote the notation of frames we shall use in this article. The camera equipped on the 

drone is positioned as downward facing will be characterized by frame C whose origin stays 

at the center of the image plane with X axis pointing to the left hand side, Y axis pointing 

downward and Z axis pointing forward, away from the camera. The body frame is centered at 

the IMU, with X axis pointing forward, Y axis pointing to the right and Z axis pointing 

downward. The inertial frame will be denoted as I, which follows the North-East-Down 

(NED) convention and placed at the helipad. We denote another inertial frame It which is the 

frame aligned with the ARUCO tag [9] whose origin placed at the tag, X axis pointing to the 

right hand side and Z axis pointing upward, away from the tag. Finally, for convenience, we 

denote I’ a 180o rotation of It around X axis. Henceforth, if we further assume the IMU and 

the camera lie on the planes parallel to each other, we yield the following relations:  
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The angle ,   can be obtained via a calibration process, which will be detailed in 

another paper. 

3.2. Problem 

Given the video stream from the camera I(t), accelerometer ( )Ba t  and gyroscope reading 

( )B t  from the IMU, find the relative position of the helipad, that is the vector 

( )IHC t
uuur

expressed in the I frame. 

 

Figure 1. Problem formulation. 
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4. HELIPAD DETECTION 

Due to the nature of the autonomous landing problem, observation of helipad is 

conducted from different perspective and distance, resulting in significant distortion of the 

helipad with perspective, scale and ambient lighting conditions. Among many template 

matching methods, object detection by Deep Learning has made great strides in recent years 

and achieved state-of-the-art result. In [8], the authors have demonstrated that the helipad can 

be detected even in low light conditions, which make deep learning a very appealing approach 

for this problem. 

We base our approach on YOLOv3 [10] paper, but we also made some small changes. 

First, we use a Tiny YOLO configuration with 7 convolutional layers and 1 upsample. 

However, because the helipad needs to be recognized from different scales and many features 

might present in variety of sizes, we decided on having 3 YOLO layers to achieve more 

robust detection, the same approach found in the full-size YOLO configuration. We also 

reduce the number of anchor boxes to to two per YOLO layer, thus along with 3 YOLO layers 

yielding a total of 6 anchors to speed up training and detection time as we want the network 

capable of running real-time on Raspberry Pi hardware. The final network architecture is 

shown in Figure 2. In the figure, axbsc denotes the convolutional layer of a filters, size b and 

stride c. The “+” layer is the residual layer and X2 is upsampling. The output for prediction is 

the YOLO layer, which is evident that there are three of them, handling anchor boxes at 

different scales. 

 

Figure 2. Customized YOLOv3 Configuration with 3 YOLO layers. 

Note that this customized network has only 1 class of object: the helipad. The training 

data is obtained through an experimental device and labelled by hand, using the YOLOLabel 

tool from [11]. A sample image dataset was created using the prototyping device (described 

later) with 283 images, 183 of which were captured in sufficient lighting condition and the 

rest were captured in poor lighting condition. The images were captured from different 

perspectives and distance, and unsurprisingly with the images captured in poor lighting 

condition, images with a lot of motion blur. The dataset is then split into two sets: one for 

training and one for validation with the ratio of 7:3 respectively. 

We use DarkNet with PyTorch from Ultralytics [12] with ADAM optimizer and train 

from scratch with Google Colab (Tesla T4 GPU) for 200 epochs with batch size of 64. The 

training took place in 13 minutes, the result is shown in Figure 3. 
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The network exhibits a very good precision and recall characteristics during validation, 

both exhibiting near 0.9. The final GioU is 0.361 with mean average precision at 0.5 around 

0.995. The classificiation score is unnecessary since only one class of object is involved. 

 

Figure 3. Training of the YOLOv3 Network. 

 

Figure 4. Example of Object Detection by YOLO. 

Figure 4 shows an example of helipad detection in an image captured of a helipad with radius 

18.1cm.  

5. LOCALIZATION 

In the conventional machine vision based navigation with fiducial markers like AprilTag 

or ARUCOTag, the tag must provide enough information on the pose of the camera, which 
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includes relative position and the camera’ attitude, denoted by a rotation matrix (3)C

I SOR  . 

However, typical machine learning approaches only give a bounding box of where the object 

is in the image, without telling anything about the camera’s attitude, the depth of the object as 

well as relative position. To this aspect, we propose a method to estimate these parameters 

with help from an Inertial Measurement Unit, which is typically equipped on-board many 

modern UAVs. 

From the Pin-hole camera model equations: 
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With f: the focal length of the camera lens. Let , ,l l zx x y y yx z=− = − − = , we have: 
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Where 
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I B

C

IRR R= . Because 
B

IR  is known from the Euler angles by fusing IMU 

accelerometer, gyroscope and magnetometer reading, for example by an Extended Kalman 

Filter [13]. If we denote: 
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From the last row of (1), the depth of the object is:  

3 3 3x b y c zZ a + +=  

Substituting this result into the remaining two rows of (1): 
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Or both can be rewritten as: 
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Which we shall call as the projection constraints as they express the constrain of the 

projection map  . Now if we assume the two upper left (which we will call point 1) and 

bottom right (point 2) points of the bounding box (Figure 4) belong to the actual object, and 

that the helipad is lying flat on the ground 0z = , we yield the following equations: 
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Additional constraint is required for unique solution within bounds, which we will call as 

the scale constraint as it resolves the arbitrary scale problem by relating the dimensions of the 

helipad on the image plane with the real-world metric dimensions: 

 2 2 2

2 1 2 1( )()x Rx y y− =−+  (4) 

In which, R is the diameter of the helipad. The main source of error for estimation 

depends on whether the backprojected point of the the top-left and bottom-right points of the 

bounding box, stay close to the helipad. 

From (3) and (4), it is now possible to solve for 1 1 2 2, , , ,x y x y z  through any nonlinear 

optimization algorithm. In our case, we prefer the Trust Region Reflective method due to its 

robustness and fast convergence. 

6. EXPERIMENTAL RESULT AND DISCUSSION 

 

Figure 5. Prototyping device. 

A prototyping device (Figure 5) which comprises of a Raspberry Pi 3B (1GB model) and 

a TDK InvenSense MPU9250 was made. The IMU consists of two dies, each houses a 3-axis 

gyroscope and a 3-axis accelerometer respectively. We use the RTIMULib2 library for 

communication with the MPU and utilize the I2C communication. The gyroscope was 

configured to yield output at approximately 100Hz in the range of 500deg/s while the 

accelerometer’s range was set to 4g. Further specifications of the IMU can be found in [14]. 
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PiCamera library obtained burst shots from a Pi Camera V2. For the experiment setup, 

we place the helipad and an ARUCO tag side by side to compare results obtained from our 

algorithm and ARUCO tag’s pose estimator included in the OpenCV library [15]. A sample 

taken from the dataset can be found on Figure 6. 

 

Figure 6. Tag and Helipad Setup. 

From the extrinsic camera matrix formulation: 
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Figure 7. Helipad and Tag. 

From Figure 7: 
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(5) relates the estimation of the pose from ARUCO tag [ | ]
t

C

IR t  and the position in frame 

I, which should be the same as estimation from Section 5. After collection of 45 seconds of 

trajectory in adequate lighting condition (brightness approximately 600lux), the helipad is 

detected with a customized YOLOv3 in Section 4 and processed for localization information 

inference in Section 5. The comparison between the trajectories is depicted in Figure 8.  
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Figure 8. Comparison between AI localization and localization by ARUCO tag in adequate lighting 

condition. 

Overall, the trend of the AI inferred position and from ARUCO tag closely match with 

each other. It is noteworthy that the detection from AI tends to be much noisier, since the 

bounding box size is not consistently accurate. An Euclidean norm of the error between the 

two estimations revealed that the peak error is around 0.58m, while the low is less than 10cm. 

The mean is 0.22m and the distribution of error shows non-specific distribution, with 90th 

percentile of error is 0.3568m 95th percentile is 0.4855m. 

 

Figure 9. Distribution of error between 2 localization methods. 

Another experiment was conducted in poor lighting condition, with the average 

brightness of approximately 50lux. The camera compensated by setting longer exposure time, 

resulting in a blurrier image induced by motion. Nevertheless, the YOLOv3 detector still 

exhibited very strong performance with no missed frames. However, the accuracy degrades a 

little bit, with estimation error less than 0.612m 90% of time. Figure 11 shows the good 
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agreement between the two estimators (AI and ARUCOTag), with AI estimation tends to be 

noisier.  

 

Figure 10. Comparison between AI localization and localization by ARUCO tag in poor lighting 

condition. From top to bottom: X coordinate (AI), X coordinate (ARUCOTag), Y coordinate (AI), Y 

coordinate (ARUCOTag), Z coordinate (AI), Z coordinate (ARUCOTag). 

It is thought that the sources of error can be traced to two reasons: inaccurate bounding 

box size and the backprojected top-left and bottom-right corners are not close to the helipad. 

The first relates to the IoU of the detection algorithm, while the second can be ameliorated by 

obtaining the convex hull of the helipad with the region of interested prescribed by the 

bounding box. It is from these two factors that lead to inaccuracy in the estimation of depth, 

which in turn propagates to the rest variables. Nevertheless, the algorithm, albeit simple, 

demonstrate good localization capability, as 90% of time, the error should be less than around 
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30cm. It is also worth to mention that the ARUCO’s estimation is assumed to be ground-truth 

values here, but in reality it should come with some instability and inaccuracy too.  

 

Figure 11. Euclidean norm of Error between 2 localization methods. 

7. CONCLUSION 

In this paper, we have presented a simple method for localization of the helipad for 

autonomous landing of a rotary wing type UAV using Artificial Intelligence for Object 

Detection. Experiments demonstrated that this is a plausible approach for localization of the 

helipad, and further work that involves designing controller and localization when helipad 

went missing can be pursuit. 

 

ACKNOWLEDGEMENT 

This research is funded by Ho Chi Minh City University of Technology (HCMUT), 

VNU-HCM under grant number T-KTGT-2019-73. We thank Google Colab for providing 

free GPU for the network training process, and the warm-hearted ophthalmologist, Mrs. 

Huynh Vo Mai Quyen M.D for her endless kindness and care for me during my difficult days 

of treatment. 

 

REFERENCES 

[1]. T. Venugopalan, T. Taher, G. Barbastathis, Autonomous landing of an Unmanned Aerial Vehicle 

on an autonomous marine vehicle, in 2012 Oceans, 2012, pp. 1-9. 

https://doi.org/10.1109/OCEANS.2012.6404893 

[2]. A. B. Junaid, A. Konoiko, Y. Zweiri, M. N. Sahinkaya, L. Seneviratne, Autonomous wireless 

self-charging for multi-rotor unmanned aerial vehicles, Energies, 10 (2017) 803. 

https://doi.org/10.3390/en10060803 

[3]. J. Kim et al., Autonomous flight system using marker recognition on drone, in 2015 21st Korea-

Japan Joint Workshop on Frontiers of Computer Vision (FCV), IEEE, 2015, pp. 1-4. 

https://doi.org/10.1109/10.1109/FCV.2015.7103712 

[4]. R. Bartak, A. Hraško, D. Obdržálek, A controller for autonomous landing of AR. Drone, in The 

26th Chinese Control and Decision Conference (2014 CCDC), IEEE, 2014, pp. 329-334. 



Transport and Communications Science Journal, Vol. 71, Issue 7 (09/2020), 828-839 
 

839 

https://doi.org/10.1109/CCDC.2014.6852167 

[5]. M. Skoczylas, Vision analysis system for autonomous landing of micro drone, acta mechanica et 

automatica, 8 (2014) 199-203. https://doi.org/10.2478/ama-2014-0036 

[6]. O. Araar, N. Aouf, I. Vitanov, Vision based autonomous landing of multirotor UAV on moving 

platform, Journal of Intelligent & Robotic Systems, 85 (2017) 369-384. 

https://doi.org/10.1007/s10846-016-0399-z 

[7]. D. K. Kim, T. Chen, Deep neural network for real-time autonomous indoor navigation, arXiv 

preprint arXiv:1511.04668, 2015. https://arxiv.org/abs/1511.04668 

[8]. P. H. Nguyen, M. Arsalan, J. H. Koo, R. A. Naqvi, N. Q. Truong, K. R. Park, LightDenseYOLO: 

A fast and accurate marker tracker for autonomous UAV landing by visible light camera sensor on 

drone, Sensors, 18 (2018) 1703. https://doi.org/10.3390/s18061703 

[9]. F. J. Romero-Ramirez, R. Muñoz-Salinas, R. Medina-Carnicer, Speeded up detection of squared 

fiducial markers, Image and vision Computing, 76 (2018) 38-47. 

https://doi.org/10.1016/j.imavis.2018.05.004 

[10]. J. Redmon, A. Farhadi, Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767, 

2018. 

[11]. Y. Kwon, (2018), Yolo_Label, Available: https://github.com/developer0hye/Yolo_Label 

[12]. Ultralytics, (2018), YOLOv3, Available: https://github.com/ultralytics/yolov3 

[13]. F. L. Markley, Attitude error representations for Kalman filtering, Journal of guidance control and 

dynamics, 26 (2003) 311-317. https://doi.org/10.2514/2.5048 

[14]. T. InvenSense. (2020). MPU-9250 Nine-Axis (Gyro + Accelerometer + Compass) MEMS 

MotionTracking™ Device. Available: https://invensense.tdk.com/products/motion-tracking/9-

axis/mpu-9250/ 

[15]. G. Bradski, The opencv library, Dr Dobb's J. Software Tools, 25 (2000) 120-125. 

https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=

1692176 

 

 

https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.2478%2Fama-2014-0036
https://doi.org/10.1007/s10846-016-0399-z
https://doi.org/10.3390/s18061703
https://doi.org/10.1016/j.imavis.2018.05.004
https://github.com/developer0hye/Yolo_Label
https://github.com/ultralytics/yolov3
https://doi.org/10.2514/2.5048
https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/

