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Abstract. The use of glass fiber-reinforced polymer (GFRP) has gained increasing attention 

over the past decades, aiming at replacing traditional steel rebar in concrete structures, 

especially in corrosion or magnetic conditions. Understanding the working mechanism 

between the reinforcements and concrete is crucial in many practical applications, in which 

the corresponding bond strength is considered as a critical element. In this study, a database 

including 159 experimental beam results gathered from the available literature was used for 

the development of an artificial neural network (ANN) model in an effort to predict the bond 

strength between GFRP bars and concrete. Two ANN models using BFGS quasi-Newton 

backpropagation and conjugate gradient backpropagation with Polak-Ribiére algorithms were 

constructed and evaluated in terms of bond strength prediction accuracy. The considered 

database consisted of five input parameters, including the bar diameter, concrete compressive 

strength, minimum cover to bar diameter ratio, bar development length to bar diameter ratio, 

the ratio of the area of transverse reinforcement to the product of transverse reinforcement 

spacing, the number of developed bars and bar diameter. The evaluation of the models was 

conducted and compared using well-known statistical measurements, namely the correlation 

coefficient (R),  root mean square error (RMSE), and absolute mean error (MAE). The results 

demonstrated that both ANN models could accurately predict the bond strength between 

GFRP bars and concrete, paving the way for engineers to possess a useful alternative design 

solution for reinforced concrete structures. 

Keywords: bond strength, GFRP bars, Artificial Intelligence (AI), Artificial Neural Network 

(ANN). 
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1. INTRODUCTION  

Reinforced concrete remains the primer composition used in the construction fields over 

the decades. Generally, reinforcing rods are used in traditional reinforced concrete structures 

to bear the entire tensile stresses generated, under loading conditions and over the entire 

service life. Despite the outstanding advantages thanks to the reasonable combination of 

concrete and reinforced components, rust or corrosion of the reinforcement bars is the main 

disadvantage of this material. Besides, reinforced concrete does not possess conductive 

properties for lightning protection for buildings or passing of electromagnetic waves. In order 

to overcome the above disadvantages, recent developments have successfully applied a new 

type of reinforcement, the so-called glass fiber-reinforced polymer (GFRP) [1]. Indeed, GFRP 

is environmentally friendly and can replace the rebars under specific conditions or not suitable 

for a conventional type of reinforcement, such as coastal buildings. GFRP is a composite 

technology product, in which glass fiber is the main bearing part and accounting for 75% 

weight. The fiberglass bundles are bound and bound together by a binder of an epoxy mixture, 

hardener, and denatured component, which then runs through the heating furnace to form 

polymer steel [2]. GFRP bars are recognized as a superior alternative to ordinary steel bars, 

mainly for their high strength, lightweight, noncorrosive, fatigue resistance, nonmagnetic 

electrical insulation, and small creep deformation. The use of GFRP bars could prevent 

deterioration due to corrosion, improve durability, and increase the service life of structures 

[3]. On the basis of the mechanical properties, the bond strength between GFRP bars and 

concrete is one of the important factors in reinforced concrete structures. The characteristic of 

GFRP material is anisotropic, non-homogeneous, and linear elastic, thus resulting in different 

force transfer mechanisms between reinforcements and concrete [4]. Accordingly, accurate 

prediction of the bond strength between the GFRP bars and concrete is crucial for the design 

of load-bearing structures.  

Over the past few decades, many studies have been performed to identify the main 

factors affecting the bonding behavior based on either beam or direct pullout tests [5]–[7]. 

These empirical studies have shown some main parameters affecting the bond strength, such 

as concrete compressive strength, concrete cover, bar diameter, bar position, bar surface, and 

development length. Besides, theoretical studies have also been carried out to analyze the 

bond mechanism of GFRP with concrete. Based on the experimental results, three theoretical 

bond-slip relationships, namely the Malvar model [8], the Bertero-Popov-Eligehausen model 

[9], and the Cosenza-Manfredi-Realfonzo (CMR) model [10], were introduced to evaluate the 

adequacy to model FRP-concrete bond. Three most promising models for GFRP rebars were 

evaluated and compared with a finite element model for the analysis of GFRP-reinforced 

concrete beams. Besides, several works used these models to analyze the bond behavior of 

GFRP bars in different materials and environments [11], [12]. Aside from, the design codes of 

the United States (United States) [13], Canada [14], and Japan [15] for GFRP bars also 

provided guidelines related to the bond mechanism in terms of both development length and 
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bond strength. However, in reality, no uniform manufacturing standards have been established 

for GFRP bars, leading to the difference of FPR bars performance in different countries and 

manufacturers. Therefore, existing models proposed to analyze the bond stress-slip relations 

have made certain assumptions [16]. So far, no unified model has been universally applicable 

to the bond behavior of the GFRP bar. Therefore, it is necessary to conduct researches on a 

universal method to predict the bond strength between GFRP bars and concrete. 

Over the past decades, machine learning algorithms have been successfully applied in the 

field of civil engineering, especially Artificial Neural Network (ANN) [17] - [19]. The ANN 

is a mathematical model built on the understanding of information processing processes of the 

human brain. So far, thanks to the advances in theory, calculation ability, and practical 

advantages, the ANN model has been increasingly applied in many different technical fields, 

especially in applications complex function simulations to find the relationship between input 

and output variables. In a study by Dahou et al. [20], an ANN-based model was used to 

predict the final bond strength of ribbed reinforcement bars, derived from pull-out tests. In 

another work of Golafshani et al. [21], an ANN and fuzzy logic (FL) models were developed 

to predict the bond strength of steel bars in concrete. The predictive results show that it is 

acceptable for both ANN and FL models, in which ANN models exhibited higher accuracy 

than FL. This fact clearly highlighted the applicability of the ANN model to solve complex 

technical problems. However, limited studies have investigated the robustness of the ANN 

algorithm and shown only the results corresponded to the best predictor.  

Therefore, in this study, two ANN models using BFGS quasi-Newton backpropagation 

and Conjugate gradient backpropagation with Polak-Ribiére algorithms are developed. 

Moreover, the robustness of the two models are evaluated using mean and standard deviation 

values of three criteria to fully assess the robustness of the algorithms in predicting the bond 

strength of GFRP bars in concrete. 

2. METHODS USED 

2.1. Artificial neural network 

Artificial neural network (ANN) is a model of information processing simulated based on 

the activity of the biological nervous system, consisting of a large number of neurons that are 

attached to process information. ANN has the ability to store information and use such 

information in the prediction of unknown data. The general architecture of an ANN consists 

of 3 components, which are the input layer, the hidden layer, and the output layer. The 

relationship between the input data and the result is shown by equation (1) 

       ( )1 2, ,..., nY f X X X=        (1) 

in which Y is the result to be forecasted, and X1, X2, ..., Xn are the number of input data 

vectors. 

These data classes are linked through weights, bias, and transformation functions.
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2.2. Training algorithms 

Network training is the process of determining the optimal weight of an ANN. This is 

done by determining the performance function (usually the average square error between the 

network output and the desired target) and then minimizing it by weights. The 

backpropagation (BP) algorithm is the most widely used training technique for continuous 

function mapping, which has proven to be theoretically correct. The BP algorithm consists of 

two stages. The first is the signal propagation phase (Signal Forward). The input signals 

(vector of input values) are propagated from the input layer to the output layer (passing 

through hidden layers). The next stage is the backward error propagation (Error Backward). 

Based on the desired output value of the input vector, the system will calculate the error 

value. The error value is propagated backward from the output layer to the input layer. The 

weights will be updated (or adjusted) until the error is considered acceptable. The weight 

adjustment is made according to the generalized delta rule to minimize the error [22]. 

However, BPNN generally converges slowly and could easily be trapped in a local minimum. 

In order to avoid these disadvantages, various training algorithms have been proposed to 

speed up the ANN training phase. In this study, two different weight update functions were 

evaluated, namely the Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi-Newton 

backpropagation (simply denoted as BFG) and conjugate gradient backpropagation with 

Polak–Ribiére updates (CGP) to optimize the predicted bond strength of GFRP bar in 

concrete. 

2.2.1. BFGS quasi-Newton backpropagation (BGF) 

The BFGS method belongs to quasi-Newton methods, a class of hill-climbing 

optimization techniques that seek a stationary point of a (preferably twice continuously 

differentiable) function. In Quasi-Newton methods, the Hessian matrix of second derivatives 

is not computed. Instead, the Hessian matrix is approximated using updates specified by 

gradient evaluations (or approximate gradient evaluations). The BFGS method is one of the 

most popular members of this class. This algorithm approximates the Hessian matrix by a 

function of the gradient to reduce the computational and storage requirements. The update of 

the approximation to the Hessian matrix on iteration r can be written as:  

( ) ( )( ) ( ) ( )( )

( ) ( )( )

( )

( )

1 1 1 1 1 1

1 1 11 1

T Tr r r r r r r r

r

T T
r r rr r r

E E E E B B
B

BE E

     

   

− − − − − −

− − −− −

 −  −  
 = −

  −   (2) 

where Br refers to the update of the approximation to the Hessian matrix on iteration r, 

and Br-1 is the approximation to the Hessian matrix on iteration r-1. 

2.2.2. Conjugate gradient backpropagation with Polak-Ribiére (CGP) 

The basic BP algorithm adjusts the weights in the steepest downward direction. In 

conjugate gradient algorithms, the first iteration is started by searching in the steepest 

downward direction (negative of the slope): 

0 0p g= −               (3) 

A search is then conducted along the conjugate gradient direction to determine the 

optimal distance to minimize the performance function along that line. The conjugate gradient 
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used here is proposed by Polak and Ribiére [23]. The search direction at each iteration is 

determined by updating the weight vector as: 

1k k k kp  + = +        (4) 

where:                                              
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     (5) 

2.3. Performance criteria 

In order to validate developed ANN models, three statistical criteria, namely correlation 

coefficient (R), root mean square error (RMSE), and absolute mean error (MAE) were used in 

this research. The R value used to investigate the linear correlation between the target and the 

predicted values, lies in the range [-1; 1]. Both RMSE and MAE measure the average 

intensity of the error, where MAE represents the residual error between the target and 

predicted values for each dataset, and RMSE denotes the square root of the average residual 

error between target values and predicted values for each data set. For these two indicators, 

the smaller value signifies the better performance of the ANN model. The closer the absolute 

value of R is to 1, the stronger the ANN model is in predicting bond strength. R, RMSE, and 

MAE are defined by the following equations:  

                            ( )0, ,

1

1 N

j t j

j

RMSE p p
N =

= −                 (6) 

0, ,

1

1 N

j t j

j
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          (8) 

 

where: N is the number of database, p0 and 
0p is the actual experimental value and the average 

real experimental value, pt and 
tp  is the predicted value and the average predicted value, 

calculated according to the model forecast. 

3. CONSTRUCTION OF DATABASE 

The development database for this study, including 159 beam test data is published in the 

literature [24]. The set of tested beam-type specimens consisting of notched, hinged, splice, 

and inverted hinged beam specimens. ANN model built using five input parameters, the bar 

diameter (db), concrete compressive strength (f’c), minimum cover to bar diameter ratio 

(C/db), bar development length to bar diameter ratio (l/db) and the ratio of the area of 

transverse reinforcement to the product of transverse reinforcement spacing, the number of 

developed bars and bar diameter (Atr/sndb). The output parameter is the bond strength. In the 
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collected dataset, the value of the bar diameter varies in the range of 9.53–28.58 mm, the 

concrete compressive strength is in the range 23.43–48.86 MPa, the liquid limit varies from 

20.8–154.12 %, the minimum cover to bar diameter ratio ranges between 1 and 6.2, the bar 

development length to bar diameter ratio value varies from 3.56 to 97.24, and the number of 

developed bars and bar diameter ranges from 0 - 0.08 mm. Besides, the bond strength values 

are in the range of 1.64 to 22.34 MPa. The detailed statistical information of these variables is 

shown in Table 1. An illustrative schematic of the beam test is shown in figure 1. 

 
Figure 1. Schematic illustration of beam test. 

The dataset was randomly divided into two subsets using a uniform distribution, in 

which 70% of the data (corresponding to 111 data) was used to train ANN models, and 30% 

of the remaining data (corresponding to 48 data) was used for model verification. All data are 

scaled within the range of [0,1] to reduce number errors while processing by ANN, according 

to the recommendations of. This process ensures that the training phase of AI models can be 

carried out with functional generalization capabilities. Such proportions are expressed using 

equation (10): 

2( )
1scaled

 


 
 

(

(10) 

where   and   are the minimum and maximum values of given variables, and   is the 

value of the variable to be scaled. 

Table 1. Statistical analysis of the input and output variables used in this study. 

 Unit Role Min Median Average Max StD* 

db Mm Input 9.530 18.440 18.675 28.580 5.033 

f’c MPa Input 23.430 31.020 34.972 48.860 7.109 

C/db –  Input 1.000 2.120 2.661 6.200 1.153 

l/db – Input 3.560 16.000 18.161 97.240 15.813 

Atr/sndb mm Input 0.000 0.000 0.016 0.080 0.023 

τb MPa Output 1.640 5.880 7.829 22.340 5.042 

StD* = standard deviation 

l 

L 
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4. RESULTS AND DISCUSSION 

For ANN model training process and backpropagation network structure, the critical 

internal parameters include data preprocessing and presentation, initial synaptic weights, 

learning rate, number of hidden layers and number of neurons in each hidden layer, activation 

functions for hidden layers and output layers, and the number of training epochs. The number 

of hidden layers is usually determined during the ANN network structure setup. The number 

of hidden layers needed for the network depends on the complexity of the relationship 

between the input parameters and the output value. Currently, researchers have not yet come 

up with a method to determine the optimal structure of the ANN network. The process of 

building a network structure is a process of trial and error. Many network models are given by 

changing the number of neural in each hidden layer and the number of hidden layers in the 

model. The model gives the best forecast results will be chosen. Cybenko [25] and Bound 

[26] succeeded in using a hidden layer model in classifying input variables to process models. 

Determining the number of hidden layers, starting with a hidden layer, then increasing the 

number of neural in that hidden layer. If the model accuracy is still not good, the final choice 

is to increase the number of hidden layers, according to the author. The amount of neural in 

each hidden layer depends on the problem to be solved. In this study, the ANN model 

structure for predicting the bond strength of GFRP bars in concrete was selected with three 

layers, in which: the input layer consists of 5 neurons corresponding to 5 input parameters, the 

hidden layer consists of 9 neurons, and the output layer included one neuron representing the 

bond strength. 

4.1. BGF-ANN and CGP-ANN network performance 

ANN-BFG model and ANN-CGP model with structure (5-9-1) were used in this study to 

predict the bond strength of GFRP bars in concrete. As mentioned above, the performance of 

ANN model depends on the number of training epochs. The trial and error process is used to 

determine the optimal number of training epochs. Figure 2 shows the best training 

performance for the training dataset of the ANN-BFG model (Figure 2a) and ANN-CGP 

model (Figure 2b), while Figure 2c and Figure 2d represent some examples while the models 

were overfitting if the number of epochs was not correctly taken. As observed, the ANN-BFG 

model for the training phase with 50 epochs was optimal, whereas the ANN-CGP model 

exhibited the best performance with 100 epochs. These numbers of epochs were selected to 

avoid overfitting, where the network has not removed the noise itself, so the output 

destination function is only true for the dataset put into network training, and other data will 

bring substantial errors. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2. A graph showing the best training performance of (a) ANN-BFG, (b) ANN-CGP, and the 

potential error in using the wrong number of epochs (c) ANN-BFG; and (d) ANN-CGP. 

4.2. Convergence of results 

 

 
Figure 3. Normalized statistical convergence over 500 simulations for: (a) RMSE; (b) MAE; and (c) R. 
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The convergence of the proposed ANN model depends on the number of simulations for 

each ANN combination. In this study, a number of 500 simulations were employed to study 

the performance of the proposed ANN models in the presence of input variability. The 

predicted convergence concerning RMSE, MAE, and R for the ANN-CGP model (red line) 

and ANN-BFG model (green line) is plotted in Figure 3. As observed, after about 70 

simulations, the fluctuations of RMSE and MAE are in the 5% range, and below 1% for R. 

When the number of simulations reached 500, all values of RMSE, MAE and R are 

converged. It is shown that the choice of 500 simulations was relevant in order to obtain 

optimized results for all R, RMSE, and MAE values. The prediction capability of each ANN 

model is presented in the next section. 

4.3. Prediction capability 

    

  

Figure 4. Probability density function of (a) RMSE, (b) MAE, and (c) R over 500 simulations using 

ANN-BFG and ANN-CGP, respectively. 

The probability density function of RMSE, MAE, and R values for the ANN-BFG model 

and ANN-CGP model is shown in Figure 4. The statistical analysis results shown in Table 2 

include the min, mean, max, median, and standard deviation (St.D) of variation of R, RMSE, 

and MAE distributions. The mean and standard deviation values corresponding to the case of 

R were 0.921, 0.0456 for ANN-BFG, and 0.9265, 0.0252 for ANN-CGP, respectively. With 
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respect to RMSE, these values were 2.0281, 0.6840 for ANN-BFG, and 1.9455, 0.3225 for 

ANN-CGP, respectively. The values of average and standard deviation of MAE were 1.3602, 

0.2631 for ANN-BFG, and 1.3895, 0.2103 for ANN-CGP, respectively. From the statistical 

analysis of the obtained results, it is seen that the error distribution of the ANN-BFG model 

and ANN-CGP model were quite close to each other. However, the ANN-CGP model is 

slightly better (R values was about 0.6% higher than the ANN-BFG model). This showed that 

both ANN-CGP and ANN-BGF produce excellent results in terms of bond strength 

prediction. Thus, the ANN models with backpropagation algorithms were promising to 

predict the bond strength of GFRP bars in concrete. 

 

Table 2. Statistical analysis results of R, RMSE and MAE distributions over 500 simulations. 

 Min. Mean Max Median St.D. 

RMSE(ANN-BFG) 1.1346 2.0281 11.1313 1.9443 0.6840 

MAE(ANN-BFG) 0.8399 1.3602 2.9692 1.3231 0.2631 

R(ANN-BFG) 0.3512 0.9210 0.9778 0.9291 0.0456 

RMSE(ANN-CGP) 1.1979 1.9455 3.6454 1.9083 0.3225 

MAE(ANN-CGP) 0.8628 1.3895 2.1757 1.3759 0.2103 

R(ANN-CGP) 0.7597 0.9265 0.9744 0.9300 0.0252 

 

4.4. Typical prediction results 

In this section, the validation of two ANN models is proposed to predict the bond 

strength of glass fiber-reinforced polymer concrete. The regression graph between the actual 

and predicted results for the training dataset is shown in Figures 5a and 5c, whereas Figures 

5b and 5d show the correlation for the testing dataset, using ANN-BGF and ANN-CGP, 

respectively. A linear fit was also applied and plotted in each case. The values of R calculated 

for the training dataset were 0.97016 for ANN-BFG model, and 0.95461 for ANN-CGP 

model. For the testing dataset, these values were 0.97416, 0.97438 for ANN-BFG, and ANN-

CGP models, respectively. 

The results obtained in this study were found more accurate than previously published 

results in the literature. For instance, in the work of Golafshani et al. [24], the authors 

proposed an ANN model and obtained the RMSE values of 1.27 and 1.37, and MAE values of 
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0.97 and 1.06 for the validating and testing datasets, respectively. In another work by Yan et 

al. [27], the MAE values were 0.85 and 0.84, whereas those of RMSE were 1.35 and 1.31 for 

the validating and testing parts, respectively. Besides, Yan et al. [28] obtained the R values 

using ANN with genetic optimization (GA) of 0.948 and 0.951 for the validation and testing 

parts, respectively. These results were inferior to those of the present work, considering the 

best performance of ANN-BFG herein: RMSE = 1.135, MAE = 0.840, and R = 0.9778 (see 

Table 2). 

 

 

 

Figure 5. Regression graphs between predicted and actual values of the bond strength of GFRP bar in 

concrete for the training dataset using: (a) ANN-BFG, (c) ANN-CGP; for the testing dataset 

using: (b) ANN-BFG, (d) ANN-CGP, respectively. 
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5. CONCLUSION 

The ANN-BFG model and the ANN-CGP model developed in this study were used to 

predict the bond strength of GFRP bars in concrete. For this purpose, a database consisting of 

159 different experimental bond beam tests was compiled, of which 111 records were 

randomly used for the training phase, and 48 were used for the testing phase. The analysis 

results showed that both models built were able to predict the bond strength of GFRP bars in 

concrete correctly, avoiding costly and difficult experimental tests that require detailed and 

specific training, equipment, expertise. The proposed simple ANN  model can easily estimate 

the bonding strength of FRP bars in concrete so that structural engineers could predict the 

bond strength of GFRP bars in concrete. 
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