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Abstract. This paper deals with a geometrically nonlinear finite element formulation for the 

analysis of torsional behaviour of RC members. Using the corotational framework, the 

formulation is developed for the inclusion of nonlinear geometry effects in a multi-fiber finite 

element beam model. The assumption of small strains but large displacements and rotations is 

adopted. The principle is an element-independent algorithm, where the element formulation is 

computed in a local reference frame which is uncoupled from the rigid body motions 

(translations and rotations) of the reference frame. In the corotational based frame, strains and 

stresses are measured from corotated to current, while base configuration is maintained as 

reference to measure rigid body motions. Corresponding to the requirement of corotational 

based, in the local frame, taking into account the torsional effect conducts to nonlinear strain 

assumption, thus require some specific development using a new kinematic model. Second 

order strain is accounted in the axial term, however lateral buckling is neglected, therefore 

this formulation is recommended to use in case of solid cross-section with arbitrarily large 

finite motions, but small strains and elastic material behaviour, such as slender of long-span 

reinforced concrete beam-column under flexion-torsional effect following serviceability limit 

state design. The enhanced formulation is validated in linear and nonlinear material range by 

several examples concerning beams of rectangular cross-section. 
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1. INTRODUCTION  

Under extreme loads, structures may achieve large displacement conditions. 

Consequently, the linear geometric assumption becomes insufficient for the simulation of 

structural elements, and a nonlinear geometric framework is required. Regarding as an 

alternative and effective way of deriving non-linear finite element responses for large 

displacements but small strains problems, the corotational approach has attracted a huge 

amount of interest over twenty years [1,2].  The use of this formulation is motivated by the 

fact that thin structures undergoing finite formulation are characterized by significant rigid 

body motions. 

The main advantage of a co-rotational approach is that it leads to an artificial separation 

of the material and geometric non-linearity when a linear strain definition in local coordinate 

system is used: plastic deformations occur in the local coordinate system where geometrical 

linearity is assumed; geometric non-linearity is only present during the rigid rotation and 

translation of the un-deformed beam. This leads to very simple expressions for the local 

internal force vector and tangent stiffness matrix. Even when a low-order geometrical non-

linearity is included in the strain definition, the expressions for the local internal force vector 

and tangent stiffness matrix are not much complex. In other words, the main benefit of this 

separation is the possibility to reuse existing linear geometric elements [3]. 

The geometric nonlinearity effect has been taken into account in various models, 

especially for the case of thin-walled cross-section and steel materials, in which the effect of 

axial and/or lateral-torsional buckling is important [4-7]. However, such model for reinforced 

concrete element of solid cross-section is rare, mostly including torsional effect. In this 

present work, a Total Lagrangian-Corotational approach is employed for the development of 

beam and beam-column elements, in which an initial un-deformed geometry, translated and 

rotated as a rigid body, is chosen as the reference configuration in the corotated frame. The 

beam formulation in the local coordinate system is developed and adopted from the one 

proposed by the author [8], using multi-fiber approach and displacement-based formulation. 

The formulation developed hereafter is based on small deformations within the corotational 

(natural) frame. 

2. COROTATIONAL FRAMEWORK 

2.1. 3D rotation parametrization 

Before expressing the co-rotational formulation, it is necessary to define the 3D finite 

rotations of a beam element, which is one of the key issues concerning the nonlinear 

geometric formulation. Indeed, the rotation of a vector (or frame) e  into a new position t  is 

related by a rotation matrix R  (Figure 1), an orthogonal tensor of 3 3 matrix: 

                                              
2

3 2

sin 1 cos
( ) ( )Sp Sp

 

 

−
= + +R I Θ Θ                                   (1) 

Where 
3I  is a 3 3 identity matrix,   is the magnitude of the so-called rotation vector Θ  and 

( )Sp Θ  is the spin of this rotation vector. The incremental rotation of the moving vector/frame 

t  is considered by generating a small variation  t from the rotated position. 
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The derivation of the rotation vector R is derived by defining a new parameter Ω  as the 

spatial angular variation representing the infinitesimal rotation that is superimposed on the 

rotation matrix R . This parameter plays a very important role in the incremental analysis for 

updating the rotation matrix R from i state to i+1 state. Knowing that i
R  and i+1

R are in 

function of i
Θ and i+1

Θ , respectively, however the addition of the spatial angular variation 

Ω does not give 1i+
Θ : 1i i +  +Θ Θ Ω . This problem of multiplicative update for rotations in 

the incremental analysis is solved by projecting the vector Ω  onto the parameter space 

adopted for R  and obtaining, as a result, a new parameter called admissible angular variation 
Θ . The conversion between this two parameters is represented by a complex relationship: 

[1], ( )s =Ω T Θ Θ , where 
sT  is a transformation tensor defined in function of   and ( )Sp Θ . 

 

Figure 1. Rotation of a frame/vector and its incremental. 

2.2. Coordinate systems and local reference frame definition 

In the context of co-rotational framework, the large displacement kinematics of 3D beam 

elements must be decomposed into a local rigid reference frame that follows the element 

deformations and the rigid body motion of this local frame. Knowing that in this local 

reference, the linear geometric assumption is still valid and the existing finite element 

formulations can be used accordingly, the key issue of the co-rotational formulation is to 

define the local reference frame and its nonlinear rigid body motion. Then, not only the 

proposed model in this work, but also different local formulations can be applied and 

compared in this co-rotational framework. In this present work, a beam element is limited by 

two end nodes I and J. The motion of a beam element is attached to a local reference system 

and its rigid body motion is considered in a global reference system which is defined by a 

triad of unit orthogonal vectors E . In the initial un-deformed configuration, the local 

reference system is defined by a triad of unit orthogonal vectors o
ie . The rigid rotation relative 

to the global reference of this local frame is defined by a rotation matrix oR : 
o

o
i i⎯⎯⎯→

R
E e  , 

whose components are defined by the position of two beam nodes (Figure 2). 

 

Figure 2. Coordinate systems and beam kinematics in local frame. 
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Then, the beam is deformed and its rigid body motion is represented by the centroid 

displacement of a cross-section. This generalized displacement consists of two components: a 

vector of translations d  relative to the global reference and a rotations vector Ω  about the 

axes of global triad. At local level, the translations vector is denoted by d  while the rotations 

vector about the local triad becomes Ω . In the final configuration of the beam, it is 

recommended to define two local reference systems (Figure 2): 

• Local reference system in semi-final configuration (translated but not rotated): defined 

by a triad of unit orthogonal vectors ie . The rigid rotation relative to the global 

reference of this frame is defined by a rotation matrix r
R : 

r

i i⎯⎯⎯→
R

E e . 

• Local reference system in final configuration (totally deformed): defined by two triads 

of unit orthogonal vectors at each node: I
it  and J

it , or simply IJ
it . As in the sequel, 

the term local frame or local reference system is always considered to the local frame 

in this final configuration. 

From these definitions of global and local coordinate systems, there are two ways to 

express the global rotation at end nodes of the beam element: 

1. A rotation of the local axes relative to the global frame, defined by the rigid rotation 

matrix r
R , followed by a rotation of the node relative to local axes, which is defined 

by a local rotation matrix IJ
R : 

r IJ
IJ

i i i⎯⎯⎯→ ⎯⎯⎯→
R R

E e t . 

2. A material rotation of the node relative to the global reference, defined by rotation 

matrix gIJ
R , followed by a global rotation of the local frame at initial configuration, 

defined by the rotation matrix o
R : 

o gIJ
o IJ

i i i⎯⎯⎯→ ⎯⎯⎯→
R R

E e t . 

The following relationship can be formulated between theses rotation matrices: 

 
r IJ gIJ o=R R R R                                                   (2) 

The material rotation matrix gIJ
R can be expressed in function of  and ( )Sp Θ , while the 

rigid rotation matrix r
R are defined from gIJ

R , o
R , the nodal coordinates of beam nodes and 

the displacement vectors. Consequently, the nodal rotation matrix IJ
R can be evaluated: 

IJ rT gIJ o=R R R R . 

2.3. Change of variables 

In the co-rotational framework, the generalized and nodal displacements of beam element 

are defined relative to the global reference system, while the existing element kinematics are 

determined relative to the local frame. Therefore, it is necessary to make a transformation of 

variables between global and local reference. For the shake of convenience, as in the sequel 

all the variables relative to the local frame in final configuration will be denoted with a bar. 

Moreover, as a reminder the incremental rotation of local frame needs a conversion from 

material angular variation Θ  to spatial angular variation Ω , thus two more changes of 

variables are required for this angular conversion, one in global and other in local level. In 

short, in the co-rotational formulation, there is a total of three transformations to be 

performed: Local variables (with material angular) 
(1)

⎯⎯→  Local variables (with spatial 
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angular) 
(2)

⎯⎯⎯→  Global variables (with spatial angular) 
(3)

⎯⎯→  Global variables (with 

material angular). 

1. 1st transformation:  →Θ Ω . This transformation between the material and spatial 

angular in the local frame is realized using the inverse relation of the transformation 

tensor 1
s
−

T  in the 3D rotation parametrization.  

2. 2nd transformation: local →  global. This is the main change of variables in the 

corotational framework. Some transformation tensors are defined representing the 

variation of axial translation and of the nodal spatial angular, then implemented in the 

transformation matrix related the displacement vectors in local and global frame. 

3. 3rd transformation:  →Ω Θ . In this last transformation, the conversion between 

spatial and material angular in global reference is established using the transformation 

tensor sT  in the 3D rotation parametrization. 

It is also important to note that, due to the particular separation of the local frame above, 

the local translations at node I will be zero and at node J, the only non-zero translation 

component is the axial translation along local axis (Figure 3). As a consequence, at local level 

the nodal displacements vector contains only 7 components, with 1 translation at node J, 3 

rotations at node I and 3 rotations at node J: ( )I J
e u=q Θ Θ  - for material angular or 

( )s I J
e u=q Ω Ω - for spatial angular. On the other hand, at global level, the nodal 

displacements vector contains 12 components with 3 translations and 3 rotations at each node: 

( )I I J J
e =q d Θ d Θ  and ( )s I I J J

e =q d Ω d Ω . 

 

Figure 3. Beam kinematics in local frame. 

3. LOCAL BEAM FORMULATION 

The beam formulation in the local frame reference is constructed based on the multi-fiber 

approach, using the displacement-based formulation. Most of the co-rotational elements found 

in the literature are based on local linear strain assumptions, except when the torsional effects 

are important [1]. In this case, for members under torsional effects the geometrical 

nonlinearity is generated by the second-order approximation Green Lagrange strains. 

3.1. General case of combined loading 

The kinematic condition proposed by Gruttmann et al. [9] is adopted, in which the 

centroid G and the shear center C are not coincident (Figure 4). The position of an arbitrary 

point P is defined by vector ( , , )o
P x y zx  in the initial configuration and by vector ( , , )P x y zx  in 

the current configuration: 
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( , , ) ( )

( , , ) ( ) ( ) ( , )

o o
P G y z

P G y z x

x y z x y z

x y z x y z x y z

= + +

= + + +

x x e e

x x a a a
                              (3) 

 

Figure 4. Kinematic model proposed by Gruttmann et al. [9]. 

With ( )o
G xx and ( )G xx  denote the position vectors of the centroid G in the initial and current 

configuration, respectively; ( )x is the parameters representing the distribution of warping 

while ( , )y z  is the Saint-Venant warping function refers to the centroid G. The second-order 

approximation of the displacement field can be expressed as ( , , ) o

s P Px y z = −d x x , so we 

obtain the following components of ( , , )s x y zd , for the case of solid cross-section in which 

the centroid G and the shear center C are coincident:  

 ( ) ( )

( ) ( )

2

2

1 1
( , , )

2 2

1 1
( , , )

2 2

1 1
( , , )

2 2

x
z y x y x z

x x
x x z y z z

x x
x x y y z y

U x y z u y z y z
x

V x y z v z y z
x

W x y z w y z y
x


      


      


      


= − + + + +




= − − + + +




= + − + + −



                (4) 

With U  the axial and ,V W the transversal components of displacement vector ( , , )s x y zd , 

, ,u v w  are the finite translations and , ,x y z    are the finite rotations, all are expressed in local 

frame. The second order Green-Lagrange strains are then derived with the assumption that the 

term 

2

1

2

U

x

 
 
 

 in the expression of GL

xx  is neglected and the non-linear strain components 

generated by the warping function are omitted and some neglecting of the non-linear terms 

verified by numerical tests. The following kinematic relationship can be obtained between 

Green-Lagrange strains and the generalized strains vector: 

 

1 0 0

0 1 0 0 0 ( , , ) ( , , ) ( )

0 0 1 0 0

x
2

yGL

xx

zGL GL GL

xy f f s

xGL

xz

y

z

1
r z y

2

z x y z x y z x
y

y
z




















  
 − 
    
    

= −  =         
    

+        

x

e a e     (5) 
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with the new definition of generalized strains: x

u

x



=


, y z

v

x
 


= −


, z y

w

x
 


= +


, 

x
x

x





=


, z

y
x





=


, 
y

z
x





=


 and the parameter 2 2 2r y z= + . So, we can see that the only 

nonlinear term of the Green-Lagrange strain approximation is the Wagner term 

2

21

2

xr
x

 
 
 

, 

which describes the interaction between axial and torsional strain.  

As in the sequel, for the shake of simplicity in establishing the numerical implementation, the 

above expression (and others) will be decomposed into 2 parts: one represents the 

linear/ordinary part following the local linear strain assumption fe , and another resulting 

from the second order Green-Lagrange approximation 
*

fe : 

 

( )* *

1 0 0 0 0 0 0 0 0

( , , ) 0 1 0 0 0 0 0 0 0 0 0 ( )

0 0 0 0 0 0

0 0 1 0 0

( , ) ( , , ) ( ) ( , , ) ( , , )

2

x

GL

f s

f f s f f

1
z y r k

2

x y z z x
y

y
z

y z x y z x x y z x y z





  
   −
   
   

= − +        
   

+      

= + = +

e e

a a e e e

    (6) 

The only non-zero component in the vector of 
*

fe  is the axial strain: * 2 21
0 0

2

T

f xr 
 

=  
 

e ; 

( , , )f x y za  and 
* ( , , )f x y za  are respectively the linear/ordinary and the second order 

compatibility matrix. Then, the following constitutive relationship can be established: 

( )* *GL GL

f f f f f f f f= = + = +s k e k e e s s , where fk  is the material stiffness matrix. In this section, 

for the shake of simplicity, we consider that fk  is approximated as a consistent tangent 

operator:  

0 0

0 0

0 0

f y

z

E

G

G

 
 

=
 
  

k . 

As a consequence, the normal stress becomes the only non-zero component of the nonlinear 

stress vector:  

* 2 21
0 0

2

T

f xEr 
 

=  
 

s . 

The sectional forces vector consistent to the Green-Lagrange strains can be expressed as 

follows: 
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*

2

*

*

0

0

1
( )

2

xx

A
xx

A
xy

A

xz

A
GL GL
s x xx

A
xz xy

A
xx

A
xx

A
xx

A
xx

A

dA

dA

dA

dA

x r dA

y z dA
z y

z dA

z dA

y dA

y dA









 
 

 









 
   
   
   
   
   
   
   = +       

+ − −      
      

  
  
  −
   −
 
 

















D
*( ) ( )s sx x= +






D D        (7) 

As we can see, the nonlinear Wagner term influences not only on the torsional moment but 

also the axial force and bending moments. The vector of nodal forces in local coordinates can 

be given by: 

 
( )* *GL T GL T

e s s s s s e e
L L

dx dx= = + = + Q B D B D D Q Q
                          (8) 

With 
sB  the matrix of shape functions [10]. While the ordinary part contain 12 nodal forces, 

the nonlinear part can be expressed as: 
* * * * * *0 0 0 0 0 0 0 0T I I J J

e s s x x x x
L

dx N M N M = =  Q B D , in which the 

expressions of the axial force and the nodal torsional moment are: 

* * 21 1

2
 J J

x x

L A

N N Er dA dx
L

 
= − = −  

 
   ,

* * 2 2 21 1
 

1

2 2

J J

x x x x x

L A

M M Er r dA dx
L

  
  

= − = − +  
  

  . 

The following expression can be obtained for the sectional stiffness matrix: 

( )GL GLT GL

s f f f
A

x dA= K a k a . Using the consistent tangent operator for fk , for a rectangular 

symmetric section, the following expression of sectional stiffness matrix has been obtained: 

 2 2

2

2

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

2

y

z
GL

s
A

2 4 2

x y z x

1
E Er

2

G

G
dA

1 1
Er G z G y Er

2 y z 4

Ez

Ey



 
 

 
 
 
 
 
 =
    

− + + +    
    

 
 
  



x

K (9) 

As mentioned above, the expression of GL

sK  can be decomposed into the linear/ordinary part 

sK  and the nonlinear part *

sK . It is worth to note that, for a symmetric section, at local level 
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in the framework of co-rotational formulation, the second order approximation, through the 

Wagner term, influences strongly on the torsional response and the interaction between axial-

torsion. Then, when considering the element equilibrium, the element stiffness matrix can also 

be decomposed into the linear and nonlinear part:  

 ( )* *GL T GL T

e s s s s s s s e e
L L

dx dx= = + = + K B K B B K K B K K                (10) 

Where the nonlinear part can be expressed as: 

 

* *

1 1

* * * *

1 2 1 2

* *

* *

1 1

* * * *

1 2 1 2

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

T

e s s s
L

K K

K K K K

dx
K K

K K K K

 −





− −



= =
−

− −



K B K B










 
 
 
 
 
 
 
 
 
 



  (11) 

With * 2

1 2

1 1

2
x

L A

K Er dA dx
L


 

=  
 

   and * 4 2

2 2

1 1

4
x

L A

K Er dA dx
L


 

=  
 

  . 

3.2. Case of pure torsion 

In the case of pure torsion for a rectangular cross-section, the material strain in Eq. (5) 

becomes: 

 

2

GL 2 x
xx

GL

xy x

GL

xz x
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                                                      (12) 

Where ( ) x
x x

x





=


. Under large displacements, the axial strain is not zero and is called 

Wagner term which causes a non-linearity in the response in pure torsion. Because of this 

term, the local strain cannot be related to the generalized twist 
x  in a compact form as in [7]. 

Instead, the nodal torsional moments and element stiffness matrix in a finite element 

framework will be derived from the strain energy function. The strain energy is expressed as a 

function of the local strains: 
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With 2 21
( , ) ( )

4
rr

A
EI E y z y z dA= +   and 

2 2

( , )
A

GJ G y z z y dA
y z

     
= − + +    

     
 . 

The nodal torsional moment and the element stiffness matrix in each element is then 

evaluated by: 
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    (14) 

3.3. Analysis algorithm 

In the context of this paper, the formulation is developed for a two-node displacement-

based formulation in which the primary input is the nodal displacements vector eq  of 12 

components (Figure 5). Under linear geometric condition, eq can be used directly in the beam 

formulation, however, under non-linear geometric assumptions using co-rotational 

framework, eq  is related to the global reference so it is necessary to transform it into eq , 

which is related to the local reference frame and corresponds to the beam formulation 

developed in the previous section. Once the displacement vector eq  is implemented in the 

local beam formulation, the nodal forces vector eQ  and the element stiffness matrix eK  

would be determined. Then, 3 successive transformations described above can be applied in 

order to transform these variables from the local frame into global reference. The convergence 

is obtained when the nodal displacement norm between two increments is inferior to a 

specific tolerance. The algorithm and implementation of co-rotational formulation in the 

proposed model is resumed and shown in Figure 6. 

 

 

Figure 5. Nodal displacements and correspondent nodal forces. 



Transport and Communications Science Journal, Vol. 71, Issue 4 (05/2020), 388-402 

398 

 

Figure 6. Implementation of corotational formulation into the proposed model. The dashed line 

represents the algorithm in linear geometric conditions. 

4. NUMERICAL APPLICATIONS 

A numerical example is simulated using slender cross-section dimensions in order to 

validate the implementation of co-rotational framework in the proposed model formulation. 

Then other example is investigated for reinforced concrete members. The linear geometric 

conditions of the beam formulation in the local reference are ensured by using a huge number 

of finite element and cross-section mesh. 

4.1. Elastic material range 

Let's consider an elastic cantilever beam of slender cross-section type as shown in Figure 

7, which was also used as reference in [1]. The beam model has been simulated using 10 

elements with a system of 50 5  square mesh, subjected to two loading cases: pure torsion 

and combined shear-bending-torsion.  

 

Figure 7. Details of cantilever beam subjected to shear-bending-torsion under nonlinear geometric 

conditions. 
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In the first loading cases of pure torsion, the proposed formulation in Section 3.2 is 

compared to the ones obtained by the analytical result based on Vlasov's beam theory [11] 

and the numerical model of Battini. Figure 8 presents the torsional moment versus end twist 

angle curves, in which the numerical result obtained by the proposed model shows a very 

good correlation with the others. The effect of geometric non-linearity, caused by the 

introduction of Wagner term and the co-rotational framework, make the relationship between 

torsional moment and twist angle becomes no longer linear. Without taking into account the 

Wagner term, the model is considered as a linear geometry model which gave a purely linear 

response (blue-dashed line). 

 
Figure 8. Elastic torsional response under nonlinear geometric conditions. 

The second loading case investigate the influence of shear and bending on the torsional 

behaviour of the elastic beam under geometric non-linear conditions. Figure 9 presents the 

torsional moment versus end twist angle curves for four torsion-bending moment ratios: 
R =  ; 1R = ; 1/ 2R =  and 1/ 5R = . In this figure, in elastic material regime, the torsional 

behaviour is not affected by the bending and shear actions when the geometrical nonlinearity 

is neglected. However, the numerical results show that the torsional stiffness decreases 

significantly by increasing of torsion-bending moment ratios when the beam is in geometrical 

nonlinear regime. This statement should be confirmed with further experimental test and/or 

numerical simulations using a finite element software. 

 

Figure 9. Influence of torsional versus bending moment ratio to the torsional moment versus twist 

angle diagram of elastic beam subjected to combined loading of shear-bending-torsion under nonlinear 

geometric conditions. 
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4.2. Necessity of using geometric non-linear conditions for RC beam under pure torsion? 

Although making a great influence in the torque-twist diagram of beam under torsion, in 

practice, the necessity of including this nonlinear geometric effect due to Wagner term in an 

ordinary RC beam might be under question. In this section, another example is carried out in 

the field of inelastic material, in order to clarify the statement of negligence of nonlinear 

geometric conditions for concrete and/or RC beams. Specimen G5, a simply supported beam 

in the torsion test of Hsu [12], is simulated in two cases of two different local formulations: 

linear geometric model (LGM - without Wagner term) and nonlinear geometric model 

(NLGM - Wagner term included). Section details and material properties of specimen G5 are  

presented in Figure 10. 

 

Figure 10. Section details of Beam G5 in Hsu'test. 

No significant difference between the linear and nonlinear geometric model is obtained in 

the torque-twist diagram in Figure 11. Using a displacement imposed approach during the 

simulation, the cracking torque was reached at 2.5 mrad/m, corresponding to a similar value 

of 29.26 kN in both models, no difference is therefore obtained. After cracking, the torsional 

moment – twist rate diagrams are almost similar, while the ultimate torsional moments are 

achieved at 55 mrad/m for both two models and gave a value of 73.51 kN for the LGM and 

73.55 kN for the NLGM. A very small relative difference of 0.05 \% is recorded. 

 

Figure 11. Torsional moment versus twist angle diagrams of beam G5 subjected to pure torsion under 

linear and nonlinear geometric conditions. 

Table 1 shows the values of cracking and ultimate torsional moment in each specimen of 

series G in Hsu's test, obtained by the LGM and the NLGM. At the same twist rate value, the 

cracking and ultimate torsional moments obtained by the LGM were always smaller (or 

similar) than those of the NLGM. This observation corresponds to the result obtained in 

Section 4.1, in which the nonlinear geometric effect makes the torsional stiffness stronger in 
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both the elastic and inelastic material regime. However, knowing that concrete is a brittle 

material and its cracking and failure deformation is small, the RC beams were failure before 

any significant differences could be remarked. Indeed, in Table 1, minor differences were 

recorded in all the cases. 

 

Table 1.Series G of Hsu's torsion test: Cracking and ultimate torsional moment obtained by the LGM 

and NLGM. 

Beam 
Tcr (kNm) Tu (kNm) 

LGM NLGM Difference LGM NLGM Difference 

G2 29.40 29.44 0.14 % 37.75 37.76 0.03 % 

G3 26.72 26.72 0 % 49.60 49.62 0.04 % 

G4 27.94 27.94 0 % 65.72 65.74 0.02 % 

G5 29.26 29.26 0 % 73.51 73.55 0.05 % 

G6 29.79 29.84 0.17 % 40.46 40.49 0.07 % 

G7 32.13 32.13 0 % 53.79 53.80 0.02 % 

G8 32.77 32.78 0.03 % 72.12 72.14 0.03 % 

5. CONCLUSION 

The nonlinear geometry under large displacement conditions has been implemented 

successfully in a multi-fiber displacement-based beam model using the corotational 

formulation. Under torsional effect, the contribution of the Wagner term is significant, in both 

elastic and inelastic material regime. Indeed, torsional rigidity could be considerably 

increased under the influence of this nonlinear term. In the elastic material regime, when the 

beam is in geometrical nonlinear conditions, the combination of shear, bending and torsional 

moments could make some significant impact on the torsional behaviour. However, in the 

elasto-plastic material regime, when torsional moment dominates bending moment, no 

significant influence of shear-bending actions to torsional response could be observed. 

For RC beam of ordinary length in the limit state design, the implementation of nonlinear 

geometric conditions should be considered and might be neglected, since numerical 

simulation demonstrate that there is no specific difference between linear and nonlinear 

geometric conditions. 
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