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Abstract. Efficiency analysis of bus transit at the route level is critical to understand the 

existing performance of individual routes within a bus system and identify operational 

problems as well as effectively optimise their performance. This article applies the Data 

Envelopment Analysis (DEA) model to examine the performance of 38 bus routes in Hanoi, 

Vietnam. The results indicated the best and the inefficient bus routes within the given sample 

and identified the internal sources of inefficiency, including: number of stops and vehicles. 

The findings provide bus agencies in the case study with additional and useful information for 

decision making.  
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1. INTRODUCTION  

Transit agencies aim to continuously optimise their performance and improve the quality 

of service in order to increase transit ridership effectively [1, 2]. Measuring the performance 

of individual routes within a transit system plays a critical role in identifying problems in 

system design, operation and control, and in seeking means to increase ridership effectively. 

However, measuring the performance of individual transit routes is complex because multiple 

objectives (related to the operators, users, and community), and multiple input and output 

variables, exist [3]. The complexity of transit performance led to the development of a 
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framework by Fielding et al. [4] for transit system performance measurement. This 

framework consists of three dimensions; technical efficiency, operational effectiveness, and 

service effectiveness (refer to section 2). This framework allows one to compare the 

performance of different transit systems for a particular performance concept (such as vehicle 

efficiency, fuel efficiency, and operational safety) by using single ratios of service output and 

service input. This traditional approach cannot provide a single overall measure for transit 

performance evaluation [5]. The issue is addressed by using the Data Envelopment Analysis 

(DEA) approach, which allows one to compare the performance of different transit routes 

(which is considered as production units) within a transit system by building up the 

production frontier directly from an actual dataset and generating the efficiency scores for 

individual routes [1-3, 6]. In large urban areas of Vietnam (such as Hanoi and Ho Chi Minh 

city), there has been very little work quantitatively examining the performance of transit 

routes. Furthermore, there have been no studies, as far as We are aware, using the DEA for 

transit route performance evaluation.  

This article employs the DEA model to measure the performance of individual bus routes 

in Hanoi, Vietnam, considering them as sub-units of a transit system. The scientific 

contributions of this article provide: (1) empirical understanding of bus route performance in a 

case study of Hanoi using the DEA model; and (2) identification of internal sources of 

inefficiency of given bus routes. 

The article is structured as follows: Section 2 presents the review of the literature. Section 

3 presents the proposed methodology, followed by the details on the dataset used for 

empirical analysis, discussion on the results and recommendations in section 4. Finally, the 

paper is concluded in section 5. 

2. LITERATURE REVIEW 

2.1. Transit performance concepts 

Fielding et al. [4] have distinguished transit performance into three concepts: technical 

efficiency, operational effectiveness, and service effectiveness. 

Technical efficiency represents the process through which service inputs are transformed 

into outputs. This means that a transit agency invests capital in vehicles, fuel, information 

systems, employees, maintenance, and other costs (service inputs). This investment produces 

a certain service for a community such as vehicle-km, seat-km, and seat-hours (service 

outputs). An agency is considered efficient if it can reduce the inputs to produce a fixed 

amount of outputs or increase the outputs while using similar or fewer inputs. 

Operational effectiveness indicates the relationship between service inputs and consumed 

service. A transit agency spends money to offer its service, and a number of passengers (per 

day or week) consume its service. The transit agency will achieve higher operational 

effectiveness, if it increases ridership without increasing total cost of producing the services. 

Service effectiveness examines the relationship between produced outputs and consumed 

service or how well a service offered by operators is consumed by a community [2]. This 

means that not all of the services offered (measured by vehicle-km, seat-km, and/or seat-

hours) would be used by a community. If it attracts more passengers without increasing 

service or reduces service but still serves a similar number of passengers, it will be more 

effective.   
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2.2. Bus performance measurement 

There are three main approaches to measure the performance of the bus system: 

• Comparative Analysis (CA); 

• Stochastic Frontier Analysis (SFA); and 

• Data Envelopment Analysis (DEA) 

The early approach applied for bus performance measurement is known as comparative 

analysis. This approach normally uses different key performance indicators (KPIs) to compare 

the performance of different bus systems with regard to different performance concepts, such 

as labour efficiency, vehicle efficiency, fuel efficiency, operating safety, and service 

consumption per expense. KPIs are defined as ratios of bus service outputs to service inputs 

(revenue vehicle hours per operating expense or passenger trips per revenue vehicle hour). 

Fielding et al. [7] defined a wide range of KPIs for comparing the performance of bus 

systems. Vuchic [8] provided efficiency ratios (output quantity produced per resource 

quantity expended) and utilisation (a ratio of demand to supply) to measure the performance 

of a transit system. The Transit Cooperative Research Program Report 88 [9] provided a 

process for developing a performance-measurement program, including both traditional and 

non-traditional performance indicators. 

The CA approach is easy to apply for comparing the performance of bus at the route and 

system levels, but for a particular performance concept/indicator. The comparison, 

implemented for each KPI separately, leads to different levels of efficiency of one bus system 

for different KPIs. This approach, therefore, cannot provide a single overall measure of bus 

performance [5].  

The latter two approaches, SFA and DEA, are frontier methods, which build up the 

frontier production function for evaluating the efficiency level of a set of production units 

with multiple inputs and outputs. SFA (a parametric approach introduced independently by 

Aigner et al. [10] and Meeusen and van Den Broeck [11]) uses econometric techniques, while 

DEA (a non-parametric approach) employs mathematical programming techniques for the 

frontier production function estimation. The advantage of the DEA approach is that it does not 

require a functional form to estimate the frontier production function. Thus, the DEA 

approach was widely used by researchers in transit sector in general and for bus performance 

measurement in particular. 

2.3. Application of the DEA for bus performance evaluation 

The application of DEA models in measuring the bus performance can be divided into 

two levels: (1) system; and (2) route level. At the system level, different bus systems within 

an area or in different nations are compared with each other, while at the route level bus 

routes within a system would be compared to identify the best practices (benchmarks) and 

inefficient routes. Comparing the performance of different bus systems plays a key role in 

determining the average operational efficiency of a transit system and problems related to the 

operation of the whole system, but cannot explore the problems related to the internal 

activities of each bus route. On the other hand, the performance evaluation of individual bus 

routes within a system substantially provides bus agencies with opportunity to understand its 

internal activities [6, 12], and then investigate the internal sources of inefficiency.   
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Chu and Fielding et al. [5] were pioneers in applying DEA models to measure the 

efficiency and effectiveness of public transit agencies in the United States (USA). The output 

data for efficiency and effectiveness assessment were annual revenue vehicle hours and 

annual unlinked passenger trips respectively. Based on the results of analysis, the authors 

reinforced the notion of Hatry [13] that in public agencies, efficiency should be evaluated 

separately from effectiveness. 

Regarding the existing DEA literature on the field, most studies compare the performance 

of different bus systems (bus agencies) [5, 14-19], and a few studies focus on the performance 

of bus routes within a system. Sheth et al. [3] expanded the network DEA model of Färe and 

Grosskopf [20] to assess the performance of 60 different bus routes within a transit network in 

Virginia, USA. In this study, all variables related to the service provider, the users, and the 

community were used to compute the DEA efficiency scores. Results obtained help to rank 

the performance of these 60 bus routes and capture the relationship among the provider, the 

users, and the external and environmental variables related to the urban transit performance. 

Barnum et al. [6] employed the DEA model to analyse 46 bus routes of a US transit agency 

using weekday data. In the first stage, raw efficiency scores of individual bus routes were 

computed by a DEA model without considering the environmental variables. Then in the 

second stage, two environmental variables (population density, population), that are beyond 

the control of the transit agency, were used to adjust the DEA outputs (Riders and OTP). Then 

the adjusted DEA efficiency scores of DMUs are calculated. The results indicated that after 

adjusting the raw DEA scores, 20 bus routes became more efficient, 12 did not change, and 14 

became less efficient. Lao et al. [1] combined the DEA model and geographic information 

system (GIS) to measure the performance of bus lines in a transit system. In this study, GIS 

was used to generate the input data for the spatial effectiveness DEA model and visualise the 

distribution of bus stops and routes. On the basis of operational efficiency and spatial 

effectiveness scores of 24 fixed bus routes, this research ranked the performance of individual 

bus routes and demonstrated that GIS can help to analyse the spatial variation of efficiency 

and effectiveness against demographic settings. More recently, 60 individual bus lines within 

a transit network in Thessaloniki, Greece were examined by a DEA model [2]. For model 1 

and 2, input variables included trip length, span of service, and vehicles, while output 

variables were revenue seat-km for efficiency measure (model 1) and passengers for 

operational effectiveness assessment (model 2). Model 3 aimed at measuring combined 

effectiveness (revenue vehicle-km and vehicles are inputs and passengers is output). Along 

with calculating the efficiency and effectiveness scores for the three above models, this study 

also employed bootstrapping techniques to check robustness of DEA results for models 1 and 

2. This sensitivity analysis explained that it is more reliable when correcting obtained scores 

for bias.    

3. METHODOLOGY 

3.1. Data Envelopment Analysis (DEA) model 

Data envelopment analysis (DEA) was developed by Charnes, Cooper, and Rhodes 

(CCR) in 1978 [21] and later modified by Banker, Charnes and Cooper (BCC) in 1984 [22] . 

It builds upon the frontier efficiency concept first elucidated in Farrell [23]. DEA is a non-

parametric and empirical modelling based on linear programming and optimization. It is used 

widely to measure relative efficiencies of production units (termed as Decision making units, 

DMUs) with multi-inputs and multi-outputs. 
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The modelling process of DEA includes: a) identification of the production frontier (or 

isoquant) of a set of comparable DMUs. Within a set of comparable DMUs, those exhibiting 

the best use of inputs to produce outputs are identified, and would form an efficient frontier; 

and b) measures the efficiency level of each DMU by comparing its production function with 

the production frontier [24].  

The CCR model measures efficiency of a DMU relative to a reference technology 

exhibiting constant returns to scale (CRS) whereas the BCC model exhibits variable 

(increasing, constant, or decreasing) returns to scale (VRS) at different points on the 

production frontier. Regarding bus performance, due to the constraint of capacity (for instance 

bus station capacity) and operating vehicle speed (because of schedule travel time), the output 

(passengers) might not have a constant increase when increasing the inputs (bus size, service 

frequency etc.). Therefore, the constant return to scale is not always existent. This article, 

thus, employs BCC-DEA model for empirical analysis. 

3.2. BCC-DEA model 

Suppose that each DMUj (j=1…n) uses m inputs xij (i=1…m) to generate s outputs yrj 

(r=1…s), and the vi, ur are the variable weights of inputs and outputs, respectively.  

This method uses the known inputs and outputs of all DMUs in the given set of data to 

determine the efficiency of one member DMUj (j=1…n), which is assigned as DMU0. The 

efficiency of DMU0 is obtained by solving the following fractional programming problem n 

times, each DMU once. 

max ℎ0 =
∑ 𝑢𝑟 𝑦𝑟0−𝑢0

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1

                                                                             (1) 

Subject to:        
∑ 𝑢𝑟 𝑦𝑟𝑗

𝑠
𝑟=1 −𝑢0

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1;                 𝑗 = 1, … , 𝑛 

                         𝑢𝑟 , 𝑣𝑖  ≥ 𝜀 > 0;        𝑟 = 1, … , 𝑠;         𝑖 = 1, … , 𝑚.         𝑢0 𝑓𝑟𝑒𝑒 𝑖𝑛 𝑠𝑖𝑔𝑛 

Where ε is a “non-Archimedian infinitesimal”, which is smaller than any positive real 

number such that all variables are constrained to positive values.  

The objective is to obtain the input and output weights vi, ur as variables that maximize 

the ratio of DMU0, the DMU being evaluated. The value of h0 obtained from this formulation 

represents the efficiency score of DMU0. The constraints mean that h0
*, being the optimal 

value of h0, should not exceed 1 for all DMUs. In the case h0
*=1, this DMU is situated on the 

efficiency frontier [25]. 

To solve this problem, the theory of Charnes et al. [26] is applied to convert this 

fractional programming problem to the linear programming (LP) model with the changes of 

variables 𝑡(∑ 𝑣𝑖 𝑥𝑖0) = 1
𝑚

𝑖=1
; 𝜇𝑟 = 𝑡𝑢𝑟  and 𝜗𝑖 = 𝑡𝑣𝑖 . The above problem is replaced by the 

following equivalent: 

max ℎ0 = ∑ 𝜇𝑟 𝑦𝑟0
𝑠
𝑟=1 − 𝜇0                                                                       (2)        

Subject to:       ∑ 𝜗𝑖 𝑥𝑖0 = 1𝑚
𝑖=1  

                        ∑ 𝜇𝑟 𝑦𝑟𝑗
𝑠
𝑟=1 − 𝜇0 − ∑ 𝜗𝑖 𝑥𝑖𝑗 ≤ 0                          𝑗 = 1, … , 𝑛

𝑚

𝑖=1
 

                        𝜇𝑟 , 𝜗𝑖  ≥ 𝜀 > 0;        𝑟 = 1, … , 𝑠;         𝑖 = 1, … , 𝑚          𝜇0 𝑓𝑟𝑒𝑒 
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In the case of output-oriented model, the dual problem can be expressed as follows: 

max 𝜑 − 𝜀(∑ 𝑠𝑟
+𝑠

𝑟=1 + ∑ 𝑠𝑖
−𝑚

𝑖=1
)                                                              (3)                                                                                            

Subject to:       ∑ 𝜆𝑗 𝑥𝑖𝑗  + 𝑠𝑖
−  = 𝑥𝑖0 

𝑛

𝑗=1
            𝑖 = 1, … , 𝑚 

                         ∑ 𝜆𝑗 𝑦𝑟𝑗 − 𝑠𝑟
+  = 𝜑𝑦𝑟0 

𝑛

𝑗=1
         𝑟 = 1, … , 𝑠; 

        ∑ 𝜆𝑗  = 1 
𝑛

𝑗=1
                 𝜆𝑗 , 𝑠𝑖

+, 𝑠𝑖
−  ≥ 0,   𝑎𝑙𝑙 𝑟, 𝑖, 𝑗           𝜑 𝑓𝑟𝑒𝑒 

Where: (𝑠𝑖
+, 𝑠𝑖

−) are the output and input slack variables. Input slack is the amount of 

input that one DMU could reduce to produce the same output. 𝜑 is the distance parameter in 

the output-oriented DEA model. The DMU efficiency is measured by 1/𝜑. 

4. DATA SET AND EMPIRICAL ANALYSIS 

4.1. Data set  

This article uses a sample of 38 bus routes in Hanoi city for empirical analysis. These bus 

routes include both mini bus routes (30 spaces) and medium bus routes (60 to 80 spaces). The 

given bus routes are shown in Table 1. Data set used in this paper is the operation of these 

routes during the year 2018, which is collected from Hanoi Transport Department and the 

website of Transerco. 

Table 1. List of 38 bus routes within the data sample. 

No 
Bus 

Route 
Start point - destination No 

Bus 

Route 
Start point - destination 

1 01 Gia Lam Station - Yen Nghia Station 20 47B DHKTQD - Kieu Ky 

2 02 Bac Co - Yen Nghia Station 21 48 Savico Long Bien - Nuoc Ngam Station  

3 03A Giap Bat Station - Gia Lam Station 22 07 Cau Giay - Noi Bai 

4 13 Ho Tay Park - Co Nhue 23 27 Yen Nghia Station – Nam Thang Long 

5 14 Bo Ho - Co Nhue 24 34 My Đinh Station - Gia Lam 

6 18 DH KTQD - Long Bien - DHKTQD 25 35A Tran Khanh Du - Nam Thang Long 

7 20A Cau Giay - Phung Station 26 55A Times City - Buoi - Cau Giay 

8 22A Gia Lam Station - Big C Thang Long  27 109 My Đinh Station - Noi Bai 

9 23 Nguyen Cong Tru - Nguyen Cong Tru 28 42 Giap Bat Station - Duc Giang 

10 26 Mai Dong - National Stadium 29 45 Times City - Nam Thang Long 

11 31 Bach Khoa - Chem 30 49 Tran Khanh Du - My Dinh II 

12 32 Giap Bat Station - Nhon 31 51 Tran Khanh Du - Cau Giay Park 

13 33 Yen Nghia Station - Xuan Đinh 32 60A Phap Van - Ho Tay Park 

14 50 Long Bien - National Stadium 33 96 Nghia Do Park - Dong Anh 

15 BRT01 Yen Nghia Station - Kim Ma 34 98 Yen Phụ - Aeon mall Long Bien 
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16 84 My Dinh I - Linh Dam 35 99 Kim Ma - BVNT TU II 

17 85 Nghia Do Park - Van Phu 36 104 My Dinh - Linh Dam 

18 90 
Kim Ma Station - Nhat Tan 

Bridge - Noi Bai Airport 
37 105 Do Nghia - Cau Giay 

19 08B Long Bien - Van Phuc 38 106 Mo Lao - Aeon mall Long Bien 

Table 2 shows the statistical description of the input and output variables of the sample 

for the year 2018. The variables are defined as follows: 

Route length (km): length of roadways from start point to destination. 

Number of stops (stop): the total number of bus stops along the route for one way. 

Total trips (trip): total number of bus trips performed on the route during the year 2018. 

Vehicles (vehicle): total number of bus vehicles used on the route. 

Space-km (spaces-km): bus vehicle capacity multiplied by total distance traversed by all 

vehicles on the corresponding route during a year (2018). 

Passengers: total number of passenger trips performed on the route  

Table 2. Statistical description of the inputs and outputs of the 38 bus routes. 

Variables Input/output Mean Minimum Maximum Standard  

deviation 

Route length (km) Input 19.57 13.8 31.5 4.73 

Number of stops (stop) Input 31.82 20 42 5.83 

Total trips (trip) Input 53826.24 7008 126928 28923.02 

Vehicles Input 11.53 6 28 6 

Space-km Output 66255245.6 11373984 204833205 50311570.72 

Passengers Output 3900952.5 300248 19164025 4054286.16 

4.2. Model specification 

In this article, the technical efficiency and operational effectiveness of given bus routes 

are examined on the basis of maximising the outputs. Thus, the output-oriented BCC-DEA 

model is adopted for empirical analysis. A DMU is defined as the performance of each bus 

route during the year 2018. Table 3 presents the specification of models applied and the 

corresponding inputs and outputs. Here, models 1 and 2 measure the technical efficiency and 

operational effectiveness of bus routes, respectively. 

Table 3. Models and analysis framework. 

Model Performance 

dimension 

Orientation Returns 

to scale 

Input variables Output 

variables 

Model 1 Technical 

efficiency  

Output VRS Route length, Number of stops,  

Total trips, Vehicles  

Space-km  

Model 2 Operational 

effectiveness 

Output VRS Route length, Number of stops,  

Total trips, Vehicles 

Passengers 
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Technical efficiency: the output variables should present service outputs offered by the 

bus operator. Here, we select space-km because it represents the bus capacity offered by the 

operators. The inputs should present the resources used by bus operator to generate the service 

outputs. Based on the existing literature, this article uses route length, number of stops, total 

trips, and vehicles as inputs relevant to space-km. Total trips refer to the number of vehicles and 

drivers used, vehicles, route length, and number of stops introduce the operation and 

maintenance resources. 

Operational effectiveness: the outputs should represent the service consumption, so 

passengers is selected as output. Inputs for this measure are similar to technical efficiency. 

4.3. Results and discussion 

The results obtained from the efficiency analysis of the aforementioned models (model 1 

for technical efficiency and model 2 for operational effectiveness) are shown in Fig. 1. The 

score axis illustrates the efficiency scores of DMUs. A DMU is efficient if its score equals to 

1, whereas lower score indicates that it is inefficient. In the DEA models, efficient DMUs 

become benchmarks for other inefficient/ineffective DMUs in the given sample. For instance, 

considering route 51 in model 1, its score of 0.8 indicates that it is possible to increase the 

outputs by 25% (=
1−0.8

0.8
) using the similar inputs. Its benchmarks are routes 20A (𝜆20𝐴 =

0.539), 49 (𝜆49 = 0.336), and BRT01 (𝜆𝐵𝑅𝑇01 = 0.124). The combination of 53.9%, 33.6%, 

and 12.4% inputs and outputs of routes 20A, 49, and BTR01, respectively can build up the 

virtual DMU of route 51, which locates on the production frontier. 

 

Figure 1. Efficiency scores of bus routes for model 1 and model 2. 

Table 4 represents the summary statistics of the results obtained from the two models. It 

could be noted that the average efficiency score in model 1 is remarkably higher than those in 

model 2 (0.79 compared with 0.6), suggesting that bus routes considered have better 

performance in terms of technical efficiency. Additionally, both models witness a wide 

dispersion of efficiency scores because some bus routes (such as routes 104, 105, 106, 23, 98, 

and 99) have efficiency scores lower than 0.4. 
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Table 4. Efficiency scores statistics obtained for the two models. 

Model Mean Minimum Maximum Standard 

deviation 

Percentage of DMUs with score 

 
< 0.5 0.5 – 0.8 0.8 - 1 

Model 1 0.79 0.35 1 0.22 16.2% 27% 56.8% 

Model 2 0.60 0.23 1 0.29 40.5% 38.1% 29.8% 

Table 5. Slacks for several inefficient routes in models 1 and 2. 

DMU Model 1 

Number of stops 

Vehicles 

 Model 2 

Efficiency 

score 

Number 

of stops 

Vehicles  Efficiency 

score 

Number 

of stops 

Vehicles 

23 0.35 6.19 2.67  0.26 6.66 2.90 

31 0.69 9.13 1.94  0.50 10.99 1.64 

35A 0.68 5.75 1.71  0.64 6.99 0.83 

45 0.70 4.99 1.26  0.42 5.61 1.05 

84 0.38 6.87 0.79  0.34 7.52 0.33 

98 0.37 0.91 0.14  0.28 1.46 0 

99 0.38 6 0  0.23 6 0 

Table 6. The ranking of bus routes for operational effectiveness (model 2). 

DMU Ranking Efficiency 

score 

DMU Ranking Efficiency 

score 

03A; 13; 14; 20A; 49; 85; 

90; 109; and BRT01 

1 1 105 16 0.396 

22A 2 0.99 08B 17 0.38 

07 3 0.88 60A 18 0.36 

01 4 0.79 50 19 0.35 

55A 5 0.71 42 20 0.34 

32 6 0.68 84 21 0.34 

34 7 0.67 18 22 0.3 

35A 8 0.64 51 23 0.29 

02 9 0.63 106 24 0.28 

33 10 0.62 98 25 0.28 

27 11 0.55 23 26 0.26 

26 12 0.52 47B 27 0.26 

96 13 0.51 48 28 0.25 

31 14 0.50 99 29 0.23 

45 15 0.42 104 30 0.23 

Model 1: Fig. 1 shows that there are 13 efficient DMUs, including routes 03A, 07, 13, 14, 

20A, 22A, 32, 34, 49, 85, 90, 109, and BTR01. Furthermore, there are 7 routes with poor 

performance (score <0.5), consisting of routes 104, 105, 106, 23, 84, 98, and 99. The 

remaining bus routes have fairly good performance regarding the technical efficiency. 

Model 2: there are 9 efficient DMUs, including routes 03A, 13, 14, 20A, 49, 85, 90, 109, 

and BRT01 (the benchmarks of the sample). It is notable that there are 40.5% bus routes with 

poor performance (score <0.5) and 38.1% bus routes with fairly good performance (score 

from 0.5 to 0.8) (see Table 4). The least efficient bus routes (score < 0.3) are 18, 23, 47B, 48, 
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51, 98, 99, 104 and 106, which need further performance improvement. It can be observed 

from the results that bus routes with good performance mainly operate within the city centre 

(13, 14, and 85) or connect main stations (03A, 90, 109, and BRT01), while the least efficient 

routes mainly connect the city centre with suburban areas (47B, 98, 99, and 106). The ranking 

of bus routes regarding the operational effectiveness is illustrated in Table 6. 

Table 5 illustrates the slacks obtained from both models 1 and 2 for several poor 

performance bus routes (input slack is the amount of input that one DMU could reduce to 

produce the same output). The results show that slacks mostly occur for number of stops and 

vehicles. Thus, reducing the number of stops and/or vehicles used can be one of the possible 

solutions to improve performance of inefficient routes. For instance, routes 23 and 31, in 

model 1, can reduce the number of vehicles by 2.67 and 1.94 units, respectively.  

5. CONCLUSION 

This article employs the output-oriented BCC-DEA model to provide insights into the 

technical efficiency (model 1) and operational effectiveness (model 2) of 38 key bus routes 

within the bus network in Hanoi, Vietnam. The results achieved indicate the best and the 

worst bus routes within the data sample. It is noted that routes 03A, 13, 14, 20A, 49, 85, 90, 

109, and BRT01 become the benchmark of the sample for both technical efficiency and 

operational effectiveness measure. Routes 18, 23, 47B, 48, 51, 98, 99, 104 and 106, having 

the poorest performance in model 2, need further investigations to understand the key reasons 

of inefficiency, and then make appropriate decisions for performance improvement. 

The empirical analysis also explains to some extent the source of inefficiency of bus 

route performance, including the number of stops and vehicles. This indicates the 

considerably low stop spacing and the excessive use of number of vehicles on some 

inefficient bus routes. Reduction of these resources could be a solution to optimise the 

performance of these bus routes. The knowledge gained helps to provide bus operators and 

policy makers with additional information for decision makings. 

This article only uses the yearly data to evaluate the performance of 38 bus routes in 

Hanoi. Future studies should use a larger sample and more detailed timeframes (weekday or 

monthly data) for empirical analysis to obtain the more comprehensive results. Another 

limitation is that we do not investigate the influence of environmental factors (socio-economic 

factors) on the efficiency score of DMUs. This work will be performed in upcoming studies. 
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