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Abstract. In general, the fluctuation of the elastic modulus of materials is crucial in structural 

analysis. This paper develops a stochastic finite element method (SFEM) for analyzing a nonuniform 

column considering the random process in elastic modulus. This random process of elastic modulus is 

assumed as a one-dimensional Gaussian random field. The weighted integration method is used to 

discretize the random field and establish the stochastic finite element formulation to compute the first 

and second moments of displacement fields. The results of the proposed approach are validated with 

those of the previous study. The response variability of displacement of column and effect of the 

parameter of the random field is investigated in detail. 
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1. INTRODUCTION  

All materials in engineering have inherent uncertainties due to variables quality and 

inaccuracy of fabrication technology, manufacturing techniques. Normally, deterministic 

analysis [1, 2] is insufficient to provide complete information about the structural response. 

Thus, the deterministic analysis of structures needs to be complemented with the theory of 

random processes and fields to encompass the uncertain behaviors in the structural responses, 

i.e., the response variability. 
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In recent years, the stochastic finite element method has been a topic of active research 

[3-6]. For finite element implementation, it is necessary to discretize such fields into random 

vector representations. Various methods developed for the discretization of random fields 

such as Karhunen–Loève expansion [7], nodal point method [8], midpoint method [9], the 

integration point method [8], a local averaging method   [10], a weighted integral method [11, 

12]. Hyuk Chun Noh [13] developed an SFEM using the weighted integral approach to 

determine the response variability of in-plane and plate structures with multiple uncertain 

elastic moduli and Poisson’s ratio. T.D. Hien et al. [14] computed the variability of 

displacements of a beam subjected to a moving load with various random parameters by 

Monte Carlo simulation. Kitipornchai et al. [15] used the first-order perturbation technique 

incorporating mixed type and semi-analytical approach to derive the standard eigenvalue 

problem the functionally graded laminates beam based on the third-order shear deformation 

theory. 

Besides the stochastic finite element method, there are limited studies on problems with 

stochasticity which have used other methods such as meshfree method, isogeometric analysis. 

Rahman et al. [16] developed a stochastic meshless method based on the element-free 

Galerkin method for in linear elasticity considering a homogeneous random field.  N.X Hoang 

et al.  [17] and T.D. Hien et al. [18] developed stochastic isogeometric analysis for the 

eigenvalue problem of composite structures with uncertain material properties. Chensen et al. 

[19] proposed the isogeometric generalized n-th order perturbation-based stochastic method 

for composite structures with random material parameters. Larrard et al. [20] studied the 

effect of the elastic modulus variability on the mechanical behavior of a nuclear containment 

vessel. 

The paper is organized as follows. In Section 2, the finite element formulation for a 

nonuniform column with uncertain elastic modulus is developed using a weighed integration 

technique for discretization random field. Section 3 employs a numerical example and 

discussion.  Section 4 accomplishes the conclusions.  

2. STOCHASTIC FINITE ELEMENT FORMULATION FOR NONUNIFORM 

COLUMN 

We consider a non-uniform column with a random property of elastic modulus as shown 

in Figure 1: 

x

E(x)

 
Figure 1. Model of a nonuniform column with uncertain elastic modulus E. 
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Figure 2. Bar finite element with a nonuniform cross-section and random process in elastic modulus. 

 

 For the non-uniform column, the bar element with the two-degree of freedoms is suitable 

for the column as shown in Fig. 2. The displacement u(x) is interpolated by Lagrange function 

as follows:  

 ( )      1 2 e e
u x N N q N q= =   (1) 

where 
21,N N  are Hamite function: 
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and displacement vector of the element: 
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We assume that the cross-section of the column is linear variability as follows: 

 ( ) 1 21e e e

e e

x x
A x A A

L L

 
= − + 

 
  (4) 

In this study, the random process of elastic modulus E(x) is assumed as a Gaussian 

random filed. The first statistical moments (mean), autocorrelation function and 

autocovariance function of  a random process E(x) are defined by: 
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  (5)  

The power spectral density (or power spectrum) of random process E(x) is defined as the 

Fourier transform of R(): 
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The random process of elastic modulus E(x) is represented as follows:  

 ( ) ( )0 1E x E r x= +     (7) 

where r(x) is a one-dimensional Gaussian random field with a mean equal to zero. 

We compute the stiffness matrix includes a random process of elastic modulus:  
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Random variables 1 2

e eR R,   are represented by the integration of random process: 

 ( ) ( ) ( )1 2 2 1

0 0

;
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Stiffness matrix and displacement vector are expanded by Taylor's series: 
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Substituting Eq. (10) into equilibrium equation:   
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We can get the first-order solution from Eq.(11): 
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Mean vector and covariance matrix of displacement is computed as follows: 
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The coefficient of variation COV of displacement U defined as follows:  
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3. NUMERICAL EXAMPLES 

3.1. Verification example: Bar subjected to triangular distributed load    

Consider a bar problem studied by Rahman [16] with length L=1 units, which is subjected to 

triangular distributed load, p(x)=x, in the x-direction as shown in Figure 2. The bar has a constant 

cross-sectional area, A=1 units. The modulus of elasticity, E(x) is random with mean, E0 =1 units and 

r(x) is a homogeneous Gaussian random with mean zero and auto-covariance function, 

 ( ) 2 expER
bL


 

 
= − 

 
 (16) 

where E  is the standard deviation of r(x) or E(x), and b is the correlation length parameter. For 

numerical calculations, the following values were used: E =1 and b=1. 

x

 

Figure 2. A bar subjected to a triangular distributed load. 
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Figure 3. Mean at distance along the bar. 

The stochastic finite element method developed in this study was applied to determine 

the mean and standard deviation of the axial displacement of the bar. Figures 3 and 4 show 

the mean and standard deviation of the axial displacement predicted by the present approach 

and stochastic messless method [16].  The stochastic finite element method results agree very 

well with the stochastic messless method results. 

 

 

Figure 4. Standard deviation at distance along the bar. 
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3.2. Nonuniform column example 

A circular concrete column has length H=10m, diameters: 1m at the bottom and 0,5m at 

the top of the column. A material property of column: the mean of elastic modulus E0 

=29GPa, and Poisson's ratio =0.3 and coefficient of variation of a random field of elastic 

modulus σ=0.1.  

The auto-correlation functions for the respective random field r(x) are assumed as follows: 

 

 ( ) 2 d
R e



 

 
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 =  (17) 

 

A

B

 

Figure 5. Nonuniform column subjected to a concentrated load at the top. 

 

Figure 6. Effect of correlation distance on the coefficient of variation (COV) of displacement at B. 
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We have graphed the results of the coefficient of variation COV of displacement by 

correlation distance of random filed d parameter as shown in figure 6. The overall behaviors 

of the COV graph increase from 0.01 to 0.1. The first one is where length distance parameter 

d range from 0.1 to 0.5, in this region, the graph slowly increase from 0.003 to 0.008. In the 

last part is from length distance parameter d equal 0.5 to d equals 1000, in this region, the 

COV graph increase to the coefficient of variation of random field E(x).    

4. CONCLUSION 

Mean, standard deviation, coefficient of displacements of the nonuniform column are 

carried out by the stochastic finite element method. A random field of elastic modulus is 

discretized by a weighted integration technique to formulate a stochastic finite element. 

Comparing the coefficient of variation of displacement by the present method and previous 

study show high accuracy if the proposed approach. The effect of length distance parameter d 

of the random field of elastic modulus on the response COV displacements of the column 

increase when length distance parameter d goes up. The response COV displacements come 

to COV of the random field of elastic modulus if the length distance parameter d is over 100. 
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