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Abstract: This paper analysed the real-world driving data to determine the representative parameters 

of driving cycle for the purpose of the typical driving cycle development of bus in Hanoi. The real-

world driving data of bus in Hanoi were collected by using the Global positioning system technique 

with 1Hz data update rate. The real-world driving data of fifteen bus routes in the inner city were 

collected continuously, on weekdays as well as at weekends. The data, then, were used to calculate 33 

kinematics parameters reflecting the realistic driving characteristics, including vehicle-specific power. 

The hierarchical agglomerative clustering method was used to determine a minimal set of 

representative variables from the 33 kinematics parameters. The 14 representative parameters of the 

real-world driving cycle of bus in Hanoi were determined. 
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1. INTRODUCTION  

The transport system in Hanoi is undergoing a rapid development process to meet the 

strong growth rate of the city in recent years. However, due to very high vehicle density 

during a poor transportation infrastructure, the traffic jams are still happening frequently. 

Hence, transport sector is estimated to be one of the main causes of air pollution in Hanoi, in 

which buses are the main emission source of particulate matter (PM) and black carbon (BC), 

these pollutants can cause effects strongly on human health. Therefore, air pollutants emission 

from the bus system in Hanoi must be controlled closely. 
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Emission factor (EF) is a useful tool to estimate the amount of pollutants released from a 

specific source; hence, it is widely used in the emission inventory. However, there are many 

factors can impact the EF. For vehicles, these factors include the vehicle type and age, air 

pollution control technologies, the fuel type and quality, the vehicle operation conditions, 

inspection and maintenance (I/M) conditions, and ambient air conditions. Therefore, each 

country should use the country-specific emission factor (CSEF) instead of values adopted 

from other countries to reduce the uncertainty level in national emission inventories.  

The vehicle emission measurement under the controlled condition in laboratories based 

on the local driving cycle is the ideal approach for CSEF development [5]. According to this 

approach, the local typical driving cycle must be developed first. In the driving cycle 

development, the kinematics parameters of the driving cycle are used as basis to capture the 

realistic driving characteristics and are entered into the typical driving cycle. They are also 

used as assessment criteria to choose a typical driving cycle. However, in almost all previous 

studies, the selected parameters mainly reflect the driving characteristics, without parameters 

reflects well vehicle emission characteristics as vehicle specific power (VSP) parameter [8, 

12]. In addition, most of previous studies often use driving cycle parameters following the 

experience of previous studies without presenting an explanation of their choice, as in [7], 

[13], [15], [9] and so on. Meanwhile, the study of Torp et al. (2013) showed that on the 

different data sets, selected parameters could be very different although the data mining 

method are the same. Therefore, for the purpose of the typical driving cycle development to 

support for inventorying the emission of bus in Hanoi, I proposed using VSP as one of driving 

cycle parameters. After that, I used the hierarchical agglomerative clustering method to 

determine the set of representative variables of driving cycle based on the real-world driving. 

These representative variables can be used to develop a typical driving cycle or an eco-driving 

model for bus in Hanoi in next studies. 

2. METHODOLOGY 

The overall methodology used to extract the representative variables of driving cycle for 

bus in Hanoi is presented in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overall process extracting the representative variables of driving cycle. 
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This study is part of our overall research to develop the CSEF for buses in Vietnam. In 

our study, a GPS device (Garmin etrex vista HCx) with the frequency resolution of 1Hz was 

used to collect real-world driving data on the fifteen bus routes in urban Hanoi. The real-

world driving data collection was described in detail in our previous study, see [11]. In this 

paper, I only focus on the representative variables extraction of driving data to achieve our 

overall study purpose as blue highlighted in Fig.1 above. 

2.1. Calculating the parameters of driving cycle 

The collected GPS after processing was used to calculate the kinematics parameters of 

the real-world driving data of bus in Hanoi. These parameters are presented in Table 1. The 

definitions of these parameters are applied to a velocity profile consisting of n data rows of 

time ti in second, and speed vi in kph, with 1 ≤ i ≤ n, as presented in Table 2 [1, 2, 14, 17]. 

Table 1. The parameters of driving cycle. 

No. Parameter Abbreviations Units 

1  Total time T_total sec 
2  Acceleration time T_acc sec 
3  Deceleration time T_dec sec 
4  Cruising time  T_c sec 
5  Creeping time  T_cr sec 

6  Idle time (speed = 0) T_i sec 
7  Time proportion of idling mode P_i % 
8  Time proportion of acceleration mode P_a % 

9  Time proportion of deceleration mode P_d % 
10  Time proportion of cruising mode P_c % 
11  Time proportion of creeping mode P_cr % 
12  Total distance Dist km 

13  Average trip speed V1 kph 
14  Average driving speed V2 kph 
15  Maximum speed Vmax kph 
16  Standard deviation of speed Vsd kph 

17  95th percentile of speed  P95V kph 
18  Maximum acceleration a_max m.sec-2 
19  Minimum acceleration a_min m.sec-2 
20  Acceleration average a_av m.sec-2 
21  Average positive acceleration a_pos_av m.sec-2 
22  Average negative acceleration a_neg_av m.sec-2 
23  Root mean square of acceletration  RMSA m.sec-2 

24  95th percentile of positive acceleration P95PosAcc m.sec-2 
25  95th percentile of negative acceleration P95NegAcc m.sec-2 
26  Standard deviation of acceleration Acc_sd m.sec-2 
27  Number of stops N_stop - 

28  Number of stops per km N_rate /km 
29  Maximum VSP VSPmax W.kg-1 
30  Minimum VSP VSPmin W.kg-1 
31  Average positive VSP VPSpos_av W.kg-1 
32  Average negative VSP VSPneg_av W.kg-1 
33  Positive kinetic energy  PKE m.sec-2 
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Table 2. Definitions of driving cycle kinematics parameters. 

Parameters Definitions  

Total distance n
1 i

2 1 i i 1

i 2

v v
Dist (t t ) (t t )

3.6 3.6
−

=

= − + −  

Total time n

2 1 i i 1

i 2

T total t t (t t )− −

=

= − + −  

Cruising time 2 1

2 1 1 1

2 1n
i i 1 i i

i 2

t t ( a 0.1msec and v 5msec )
T c

0 (else)

t t ( a 0.1msec and v 5msec )

0 (else)

− −

−

− −

−

=

 −   
= 
  

 −   
+  

  


 

Creeping time 2 1

2 1 1 1

_

2 1n
i i 1 i i

i 2

t t ( a 0.1msec and v 5msec )
T cr

0 (else)

t t ( a 0.1msec and v 5msec )

0 (else)

− −

− −

−

=

 −   
=  
  

 −   
+  

  


 

Acceleration time  

2 2n
2 1 1 i i 1 i

i 2

t t (a 0.1msec ) t t (a 0.1msec )
T acc

0 (else) 0 (else)

− −

−

−

=

   −  − 
= +   
   

  

Decceleration time  

2 2n
2 1 1 i i 1 i

i 2

t t (a 0.1msec ) t t (a 0.1msec )
T dec

0 (else) 0 (else)

− −

−

−

=

   − − − −
= +   
   

  

Idling time  

n
2 1 1 1 i i 1 1 1

i 2

t t (v 0 anda 0) t t (v 0 anda 0)
T idle

0 (else) 0 (else)

−

−

=

− = = − = =   
= +   
   

  

Time proportion of cruising mode               
−

−

−

=
T c

P c .100%
T total

 

Time proportion of creeping mode              
−

−

−

=
T cr

P cr .100%
T total

 

Time proportion of acceleration mode 
−

−

−

=
T acc

P acc .100%
T total
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Time proportion of deceleration mode 
−

−

−

=
T dec

P dec .100%
T total

 

Time proportion of idling mode 
−

−

−

=
T idle

P stop .100%
T total

 

Average trip speed 

−

=
1

Dist
V 3.6

T total
  

Average driving speed 
 

−

=
2

Dist
V 3.6

T drive
 

Standard deviation of speed 

−

=

=
−

n

2

i

i 1

1
V sd v

n 1
 

Acceleration average 

−

=

= 
n

i

i 1

1
a av a

N
 (with N = T-total) 

Average positive acceleration −

− −

=

     
=     

    
 

1
n n

i i i

i 1 1

1 if a 0) a (if a 0)
a pos av

0(else) 0 (else)

 

Average negative acceleration  

−

− −

=

     
=     

    
 

1
n n

i i i

i 1 1

1 (if a 0) a (if a 0)
a neg av

0(else) 0 (else)
 

Standard deviation of acceleration 

−

=

=
−

n

2

i

i 1

1
Acc sd a

n 1
 

Number of stops    n
i i i i

i 1

1( v 0 a 0 v 0 a 0 )
N stop =

0 (else)
−

=

=  =    





 

Stops per km N stop
N rate 1000

Dist

−
− =   

Positive kinetic energy  
− −

=

 − 
=   

 


2 2n
i i 1 i i 1

i 2

v v (if v v )1
PKE

dist 0 (else)  
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Root mean square of acceletration  
RMSA = 

T N
2 2

i

i 10

1 1
a .dt . a

T N =

=    

 where: N = T = T_total

 Vehicle specific power   

3D

R a

C .A1
VSP {a.(1 ) g.grade g.C }.v v

2 m
= +  + + +   

Where: v - vehicle speed (assuming no headwind) ; a - vehicle acceleration;  - mass 

factorg (~ 0.1); grade - road grade (~ 0 for urban road); m – vehicle mass; g - acceleration of 

gravity (9.81 m/s2); CR - coefficient of rolling resistance (0.008 ÷ 0.013); CD - drag coefficient 

(0.5 ÷ 0.7); A - frontal area of the vehicle; a - ambient air density (~ 1.2 kg/m3). 

In which, the frontal area of the vehicle is calculated as follows [4]: 

A = (H – GC).W.0.93  

Where: H – vehicle height (m); W – vehicle width (m); GC - ground clearance (m). 

2.2. Extracting the representative variables of driving cycle 

After the GPS data processing step, I collected 317 trip segments as detail described in 

[10]. All of 317 trip segments were used to calculate the real-world driving cycle parameters 

following to the definition as presented in Table 1. Therefore, I obtained the dataset consist of 

317 rows and 33 columns in proportion to 317 trips and 33 driving cycle parameters. This 

dataset was used to extract the representative variable of driving cycle by using the 

hierarchical agglomerative clustering (HAC) method. The IBM SPSS Statistics software used 

to perform this clustering. In this study, I used the furthest neighbor algorithm to measure the 

distance between two clusters, called complete-link measurement, and used the absolute value 

of Pearson correlation coefficient to measure the distance between variables. Using the 

Pearson correlation coefficient measurement is more suitable than others because the driving 

cycle parameters are very different in the value range and units. In addition, some driving 

kinematic parameters are calculated based on others, hence, between these parameters can 

have mutual correlation. This cause the results of searching for the typical driving cycle can 

be misleading [8, 16]. Therefore, using the absolute value of Pearson correlation coefficient 

(r) as the distance measure to agglomerate parameters into a cluster would be a suitable 

approach. 

3. RESULTS AND DISCUSSION 

3.1. Real-world driving characteristics of bus in Hanoi 

Using the definition of driving cycle parameters as mentioned above, I calculated the 

driving cycle parameters of 317 trip segments. The characteristics of real-world driving data 

of bus in urban Hanoi are presented in Table 3 below.  

As can be seen in Table 3, the operation of the bus system in Hanoi has not yet reached 

high efficiency. The average speed of 16.6 kph is smaller than the one of other countries, for 

example bus in Beijing of 20.7 kph [8], bus in the Braunschweig city of 22.6 kph [2].  
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Table 3. Real-world driving characteristics of bus in Hanoi. 

Parameters Average (*)  Units Parameters Average (*) Units 

T_total 3823.9 sec a_max 3.5 m.sec-2 

T_acc 1408.6 sec a_min -3 m.sec-2 

T_dec 1452.5 sec a_av 0 m.sec-2 

T_c 320.2 sec a_pos_av 0.6 m.sec-2 

T_cr 326.4 sec a_neg_av -0.5 m.sec-2 

T_i 325.1 sec RMSA 0.6 m.sec-2 

P_i 0.1 % P95PosAcc 1.5 m.sec-2 

P_a 0.4 % P95NegAcc -1.3 m.sec-2 

P_d 0.4 % Acc_sd 0.6 m.sec-2 

P_c 0.1 % N_stop 26.7 - 

P_cr 0.1 % N_rate 1.6 /km 

Dist 17.5 km VSPmax 32.5 W.kg-1 

V1 16.6 kph VSPmin -25.2 W.kg-1 

V2 18.1 kph VSPpos_av 2.6 W.kg-1 

Vmax 45.2 kph VSPneg_av -2.7 W.kg-1 

Vsd 10.4 kph PKE 0.4 m.sec-2 

P95V 32.9 kph    

       Note: (*) the average value of 317 values in proportion to 317 trips. 

3.2. Clusters of driving cycle parameters 

The calculated dataset above was used to reduce the number of parameters by using the 

SPSS software with options for the HAC method as described in above. The agglomeration 

schedule is presented in Table 4.  

As shown in Table 4, in the first stage, the variable 23 (RMSA) and the variable 26 

(Acc_sd) were combined in the first cluster because the Pearson correlation coefficient 

between them is highest, r = 1.  

The HAC algorithm does not give the conclusions of cluster numbers, therefore, the user 

must do it. At present, there is no clear rule for determining cluster numbers [6]. In this study, 

the more clusters numbers are, the more the representative parameters of driving cycle are, 

and the better capturing the features of realistic driving patterns is. Therefore, the 

representative driving cycle parameters should be kept more. However, this can cause the 

iteration process to find the typical driving cycle becomes an infinite loop. In this study, I 

proposed two cases to agglomeration variables into clusters, one case with r  0.8, called Case 

1, and the other with r  0.7, called Case 2. The number of final clusters were determined 

based on the agglomeration schedule of 33 driving cycle variables, see Table 4. For Case 1, 

the clustering process only stop at stage of 13 with the correlation coefficient of 0.84, the 

number of final clusters are 20 clusters. For Case 2, the clustering process only stop at stage 

of 17 with the correlation coefficient of 0.764, the number of final clusters are 16 clusters. 

The number of final clusters retained are the number of representative parameters of driving 

cycle. However, Dist and T_total variables do not reflect the real-world driving pattern, they 

depend mainly on the infrastructure of bus routes, therefore, these two parameters cannot be 
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used to describe the real-world driving characteristics [1, 16]. Therefore, the representative 

parameters of driving cycle determined for two cases are described in Table 5. 

Table 4. The agglomeration schedule of 33 driving cycle variables. 

Stage 
Cluster Combined 

Coefficients 
Stage Cluster First Appears 

Next Stage 
Cluster 1 Cluster 2 Cluster 1 Cluster 2 

1 23 26 1.000 0 0 5 

2 21 33 .963 0 0 9 

3 13 14 .958 0 0 14 

4 31 32 .955 0 0 16 

5 22 23 .955 0 1 9 

6 2 3 .943 0 0 8 

7 6 7 .938 0 0 17 

8 1 2 .910 0 6 21 

9 21 22 .908 2 5 13 

10 4 10 .901 0 0 28 

11 5 11 .900 0 0 14 

12 27 28 .871 0 0 24 

13 21 24 .840 9 0 18 

14 5 13 .786 11 3 24 

15 16 17 .785 0 0 23 

16 25 31 .782 0 4 18 

17 6 8 .764 7 0 19 

18 21 25 .674 13 16 26 

19 6 9 .668 17 0 27 

20 18 29 .650 0 0 25 

21 1 12 .622 8 0 30 

22 19 30 .558 0 0 25 

23 15 16 .519 0 15 29 

24 5 27 .426 14 12 27 

25 18 19 .282 20 22 26 

26 18 21 .216 25 18 28 

27 5 6 .208 24 19 29 

28 4 18 .170 10 26 31 

29 5 15 .035 27 23 30 

30 1 5 .003 21 29 32 

31 4 20 .003 28 0 32 

32 1 4 .000 30 31 0 

 

As can be seen in Table 5, the extracted representative variables in this study include 

most of the representative variables that were determined in other studies. In addition, the 

number of kept variables in this study is higher. Therefore, the ability of maintaining integrity 

of the real-world driving characteristics during the development of the typical driving cycle is 

also better. In addition, to demonstrate the necessity of representative variables determination 

of driving cycle before developing a typical driving cycle, I used the clustering method used 

by Torp et al (2013) for the real-world driving data of bus in Hanoi; the extraction result of 

representative variables is presented in “Case 0” in Table 5. Comparison between three cases, 

I can find that the number of variables kept in Case 1 and Case 2 are higher than Case 0. 
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Therefore, the ability of capturing the real-world driving characteristics of Case 1 and Case 2 

are better than Case 0. In addition, as said in Section 2.2, between variables can have mutual 

correlation causing the results of searching for the typical driving cycle can be misleading. In 

other words, using the Pearson correlation coefficient as a distance measure between clusters 

to determine the representative variables of real-world driving data is a suitable approach.  

Table 5. The representative parameters of driving cycle. 

Parameters 

In this study  Other studies 

Case 1(a) Case 2(a) Case 0(c) 

Brady et al. 

(2013) 

Torp et al. 

(2013) 

(b) (c) (b) 

P_c       

P_cr       

P_i       

P_a       

P_d       

V1       

Vmax       

Vsd       

P95V       

a_max       

a_min       

a_av       

PKE       

P95NegAcc       

N_rate       

VSPmax       

VSPmin       

VSPpos_av       

N-stop       

Total (d) 18 14 8 10 8 14 

Notes. (a) Hierarchical agglomerative clustering method with the distance measure of 

Pearson correlation coefficient; (b) Regression analysis method; (c) Hierarchical 

agglomerative clustering method with the distance measure proposed by Torp et al (2013); 

(d) Total selected representative variables including ones which are not used in this study. 

In addition, as presented in Table 5, the kept variables in Case 0 are very different from 

ones determined in [16] although the used clustering method is the same but for two different 

real-world driving datasets. To make the decision about the choice of the representative 

variables according to Case 1 or Case 2, I brought these variables into the computer program 

developed to construct the typical driving cycle that has been published in a separate paper 

[11]. For two running times in proportion to two cases, I found that using the 18 

representative variables of Case 1 failing to make the loop stop, it becomes an infinite loop. 
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Therefore, I proposed using the 14 representative variables of Case 2 for the purpose of 

typical driving cycle development. 

4. CONCLUSION 

Determining the least number of driving parameters that can well capture the real-world 

driving characteristics and take them in the typical driving cycle is very necessary to develop 

the CSEF and the eco-driving model. However, the real-world driving characteristics can be 

different from one region to another. Therefore, using the representative variables by 

inheriting the previous study results that those determined based on the set of different driving 

data could cause losing important information. It is very necessary to determine the 

representative variables of the driving data based on the driving data set used to develop the 

driving cycle. Therefore, in this study, the real-world driving data of 15 bus routes in Hanoi 

were used to determine the representative variables of driving cycle for purposing the typical 

driving cycle development. The HAC algorithm using the distance measure of Pearson 

correlation coefficient used to extract the representative variables from 33 initial variables. A 

total of 14 representative variables were selected. This study has affirmed that the selected 

variables could be very different, even when applying the same data mining method on 

different dataset. Hence, future investigations should determine the driving cycle 

representative variables based on their own input data instead of following the experience of 

previous studies. 
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