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Abstract. In this paper, we consider the stochastic evolution of two particles with electrostatic 

repulsion and restoring force which is modeled by a system of stochastic differential 

equations driven  by fractional Brownian motion where the diffusion coefficients are constant. 

This is the simplest case for some classes of non- colliding particle systems such as Dyson 

Brownian motions, Brownian particles systems with nearest neighbour repulsion. We will 

prove that the equation has a unique non- colliding solution in path- wise sense. 
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1. INTRODUCTION  

It is known that the systems of SDEs driven by standard Brownian motion describing 

positions of d  ordered particles evolving in R has the form 
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where 
1 2( ( ), ( ),..., ( ))mW W t W t W t=  is a m  - dimensional standard Brownian. The system of 

SDEs (2) is a type of SDEs whose solution stays in a domain which has been studied by many 
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authors because of its important applications in physics, biology and finance [1]. In 

mathematical physics, the process x(t) is used to model systems of d   non-colliding particles 

with electrostatic repulsion and restoring force. It contains Dyson Brownian Motions, Squared 

Bessel particle systems, Jacobi particle systems, non-colliding Brownian and Squared Bessel 

particles, potential-interacting Brownian particles and other particle systems crucial in 

mathematical physics and physical statistics [2, 3]. The existence and uniqueness of a strong 

non-colliding solution to such kind of systems have been intensively studied by many authors 

([4, 5, 6, 7] and the references therein). But there are no  results in the case of  fractional non-

colliding particles. 

          The main aim of this paper is to study the two- dimensional fractional non- 

colliding particle systems 
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where 2

1 2 2 1 2 1 2(0) ( (0), (0)) { ( , ) : }=  = =  TX X X x x x x x almost surely (a.s) and 

1 2{ ( ), 0} ( ( ), ( ),..., ( ))H H H H T

mB B t t B t B t B t=  = is an m-dimensional fractional Brownian motion 

with the Hurst parameter 1
2

( ,1)H   defined on a complete probability space ( ,,  )P  with a 

filtration  { , 0}  t t   satisfying the usual conditions. We prove that equation (1) has a unique 

non- colliding solution in path-wise sense. To the best of my knowledge, this is the first paper 

to discuss the fractional non- colliding particle systems. 

2. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION 

Fix T > 0 and we consider eq. (1) on the interval [0,  .]T  We suppose that the coefficients 
2):  [0;+  →ib   are measurable functions and there exist positive constants L, C such 

that  following conditions hold 

(i) ( ) 20X   almost surely. 

(ii) 0.    

         (iii) (t,x),  1,2ib i =  are globally Lipschitz continuous with respect to x, that is 

1,2sup ( , ) ( , ) ,i i ib t x b t y L x y= −  −  

        for all 2, x y  and [0, ].t T   

(iv) ( ),,    1,2ib t x i =  are sub-linearly growth with respect to x, that is    

1,2sup ( , ) (1 ),i ib t x C x=  +  

       for all 2x  and [0, ].t T   

(v)  
1 2( , ) ( , )b t x b t x  for all 2x  and [0, ].t T   
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Denote max{ , }a b a b =  and min{ , }.a b a b = For each ,n  we consider the 

following fractional SDEs 
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where 
1 2 2(0) ( (0), (0)) .n n nX X X=   For each n and 

1 2( , )x x x=  we set 
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Lemma 2.1. For each 0,T    eq. (3) has a unique solution on [0, ].T   

Proof: Using the estimate , ,a c b c a b a c b c a b −   −  −   −  it is straightforward to 

verify that 

2( , ) ( , ) ( 2 ) ,n n

i if t x f t y n L x y−  + −   

for all 
1 2( , )x x x=  and [0, ]t T  and  

( , ) (1 ).n

if t x n C x + +   

It means that  coefficients of eq. (3) satisfy Lipschitz continuity and boundedness 

condition. Hence it follows from Theorem 2.1 in [8] that eq. (3) has a unique solution on the 

interval [0, ].T                                                                                                                                 

        We recall a result on the modulus of continuity of trajectories of fractional Brownian 

motion ([9]) 

Lemma 2.2. Let { ( ), 0}HB B t t=   be a fractional Brownian motion of Hurst parameter 

(0,1).H  Then for every 0    H   and T > 0, there exists an event ,T  with 

,( )  1,TP  =  and a positive random variable ,T  such that ,( )
p

T     for all [1, )p   

and for all , [0, ],s t T   

,( , ) ( , ) ( ) ,
HH H

TB t B s t s


   
−

−  −  for any , .T  
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We denote  

1
2 2inf{ [0, ] : ( ) ( ) } .n n

n n
t T X t X t T =  −    

In order to prove that eq. (1) has a unique solution on [0, ],T   we need the following 

lemma. 

Lemma 2.3. The sequence 
n  is non-decreasing, and for almost all , ( )n T   =  for n  

large enough. 

Proof. Using the estimate ( ) ,a b a b−  = − −  from eq. ( )3  we have 

2 1 2 1 2 11
12 1

2
( ( ) ( )) ( , ( )) ( , ( )) ( ) ( ).

( ( ) ( ))

m
n n n n H

j j jn n
jn

d X t X t b t X t b t X t dt dB t
X t X t


 

=

 
− = + − + − 

−  
  

(4) 

We set 2 1( ) ( ) ( ).n n nY t X t X t= −  Eq. (4) becomes 
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Then (0) 0nY   and 1inf{ [0, ] : ( ) } .n

n n
t T Y t T =      

It follows from Lemma 2.2 that for any 1
2

(0, ),H  −  there exist a finite random variable 

,T  and an event ,  T   which do not depend on n  such that ,( ) 1,T  =  and 
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We will adapt the contradiction method in [10]. Assume that for some  0 , 0, ( )T n T     

for  all .n  By virtue of the continuity of sample paths of ,nY  it follows from the definition 
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In order to simplify our notations, we will omit 
0  in brackets in further formulas. We have 
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This fact together with eq. (6) implies that 
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−  + −  for all n ≥ 
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By following similar arguments in the proof of  Theorem 2 in [10], we see that the inequality 

(8) fails for all n large enough. This contradiction completes the proof of the lemma.                                 

We consider the process 
1 2 0{ ( ) ( ( ), ( ))}tX t X t X t =  which satisfies equation (1). Now, 

we set 
2 1( ) ( ) ( )Y t X t X t= − , then ( )Y t  satisfies the following equation 
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Lemma 2.4. If eq. (1) has a solution then 
2 1( ) ( ) ( ) 0Y t X t X t= −  for all [0, ]t T   almost 

surely. 

Proof. We will also use the contradiction method. Assume that for some 
0 ,    
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Again using the inequality (6), we have 

                                     ,
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T n nn
n



     
−

−  + −                                                        (11) 

Similar to the argument of  Theorem 2 in [10] we see that the inequality (11) fails for all n 

large enough. This contradiction completes the lemma.                                     

Based on above lemmas we obtain the  main theorem of this paper which is stated as 

follows 

Theorem 2.5. For each  0T   eq. (1) has a unique solution on [0,  ].T   

Proof.  First, from Lemma 2.3, there exists a finite random variable 
0n  such that 

2 2
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1
( ) ( ) 0n nX t X t

n
−     almost surely for any [0, ].t T   Therefore, the process 

2 2( ) ( ( ), ( ))n n nX t X t X t=  converges almost surely to a limit, called X(t) when n tends to infinity 

and X(t) satisfies eq. (1). This fact together with Lemma (2.4) leads to eq. (1) has a strong 

non- colliding solution. 

Next, we show that eq. (1) has a unique solution in path-wise sense. Let X(t) and  ( )X t   be 

two solutions of eq. (1) on [0, ].T   We have 
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Using the continuous property of the sample paths of X(t) and ( )X t   and Lemma 2.4, we have 

2 10 [0, ] 2 1min { ( , ) ( , ), ( , ) ( , )} 0.t Tm X t X t X t X t   = − −   

This fact together with the Lipschitz condition of b leads  to 

2 12 1
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00 0
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(13) 

Similarly, we estimate  2 2( , ) ( , ) .X t X t −  We obtain 
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It follows from Gronwall’s inequality that  
2

1

( , ) ( , ) 0,i i

i

X t X t 
=

− =   for all [0, ].t T  

Therefore, ( , ) ( , )X t X t =  for all [0, ].t T The uniqueness has been concluded.            

3. CONCLUSION 

The main result proved in this paper is the existence and uniqueness of strong non- 

colliding solution in path- wise sense to the two- dimensional fractional non- colliding 

particle systems.  From this result, we can propose a numerical approximation for this system. 
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