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Abstract. In this paper, we consider the stochastic evolution of two particles with electrostatic 

repulsion and restoring force which is modeled by a system of stochastic differential 

equations driven  by fractional Brownian motion where the diffusion coefficients are constant. 

This is the simplest case for some classes of non- colliding particle systems such as Dyson 

Brownian motions, Brownian particles systems with nearest neighbour repulsion. We will 

prove that the equation has a unique non- colliding solution in path- wise sense. 
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1. INTRODUCTION  

It is known that the systems of SDEs driven by standard Brownian motion describing 

positions of d  ordered particles evolving in R has the form 
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where 
1 2( ( ), ( ),..., ( ))mW W t W t W t=  is a m  - dimensional standard Brownian. The system of 

SDEs (2) is a type of SDEs whose solution stays in a domain which has been studied by many 
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authors because of its important applications in physics, biology and finance [1]. In 

mathematical physics, the process x(t) is used to model systems of d   non-colliding particles 

with electrostatic repulsion and restoring force. It contains Dyson Brownian Motions, Squared 

Bessel particle systems, Jacobi particle systems, non-colliding Brownian and Squared Bessel 

particles, potential-interacting Brownian particles and other particle systems crucial in 

mathematical physics and physical statistics [2, 3]. The existence and uniqueness of a strong 

non-colliding solution to such kind of systems have been intensively studied by many authors 

([4, 5, 6, 7] and the references therein). But there are no  results in the case of  fractional non-

colliding particles. 

          The main aim of this paper is to study the two- dimensional fractional non- 

colliding particle systems 
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                 (2)   

where 2

1 2 2 1 2 1 2(0) ( (0), (0)) { ( , ) : }=  = =  TX X X x x x x x almost surely (a.s) and 

1 2{ ( ), 0} ( ( ), ( ),..., ( ))H H H H T

mB B t t B t B t B t=  = is an m-dimensional fractional Brownian motion 

with the Hurst parameter 1
2

( ,1)H   defined on a complete probability space ( ,,  )P  with a 

filtration  { , 0}  t t   satisfying the usual conditions. We prove that equation (1) has a unique 

non- colliding solution in path-wise sense. To the best of my knowledge, this is the first paper 

to discuss the fractional non- colliding particle systems. 

2. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION 

Fix T > 0 and we consider eq. (1) on the interval [0,  .]T  We suppose that the coefficients 
2):  [0;+  →ib   are measurable functions and there exist positive constants L, C such 

that  following conditions hold 

(i) ( ) 20X   almost surely. 

(ii) 0.    

         (iii) (t,x),  1,2ib i =  are globally Lipschitz continuous with respect to x, that is 

1,2sup ( , ) ( , ) ,i i ib t x b t y L x y= −  −  

        for all 2, x y  and [0, ].t T   

(iv) ( ),,    1,2ib t x i =  are sub-linearly growth with respect to x, that is    

1,2sup ( , ) (1 ),i ib t x C x=  +  

       for all 2x  and [0, ].t T   

(v)  
1 2( , ) ( , )b t x b t x  for all 2x  and [0, ].t T   
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Denote max{ , }a b a b =  and min{ , }.a b a b = For each ,n  we consider the 

following fractional SDEs 
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            (3) 

where 
1 2 2(0) ( (0), (0)) .n n nX X X=   For each n and 

1 2( , )x x x=  we set 
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Lemma 2.1. For each 0,T    eq. (3) has a unique solution on [0, ].T   

Proof: Using the estimate , ,a c b c a b a c b c a b −   −  −   −  it is straightforward to 

verify that 

2( , ) ( , ) ( 2 ) ,n n

i if t x f t y n L x y−  + −   

for all 
1 2( , )x x x=  and [0, ]t T  and  

( , ) (1 ).n

if t x n C x + +   

It means that  coefficients of eq. (3) satisfy Lipschitz continuity and boundedness 

condition. Hence it follows from Theorem 2.1 in [8] that eq. (3) has a unique solution on the 

interval [0, ].T                                                                                                                                 

        We recall a result on the modulus of continuity of trajectories of fractional Brownian 

motion ([9]) 

Lemma 2.2. Let { ( ), 0}HB B t t=   be a fractional Brownian motion of Hurst parameter 

(0,1).H  Then for every 0    H   and T > 0, there exists an event ,T  with 

,( )  1,TP  =  and a positive random variable ,T  such that ,( )
p

T     for all [1, )p   

and for all , [0, ],s t T   
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HH H
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We denote  

1
2 2inf{ [0, ] : ( ) ( ) } .n n

n n
t T X t X t T =  −    

In order to prove that eq. (1) has a unique solution on [0, ],T   we need the following 

lemma. 

Lemma 2.3. The sequence 
n  is non-decreasing, and for almost all , ( )n T   =  for n  

large enough. 

Proof. Using the estimate ( ) ,a b a b−  = − −  from eq. ( )3  we have 

2 1 2 1 2 11
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We set 2 1( ) ( ) ( ).n n nY t X t X t= −  Eq. (4) becomes 
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Then (0) 0nY   and 1inf{ [0, ] : ( ) } .n

n n
t T Y t T =      

It follows from Lemma 2.2 that for any 1
2

(0, ),H  −  there exist a finite random variable 

,T  and an event ,  T   which do not depend on n  such that ,( ) 1,T  =  and 

2 1 ,

1
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m
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We will adapt the contradiction method in [10]. Assume that for some  0 , 0, ( )T n T     

for  all .n  By virtue of the continuity of sample paths of ,nY  it follows from the definition 

of 
n   that 0 0

1
( ( ), )n

nY
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In order to simplify our notations, we will omit 
0  in brackets in further formulas. We have 
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By following similar arguments in the proof of  Theorem 2 in [10], we see that the inequality 

(8) fails for all n large enough. This contradiction completes the proof of the lemma.                                 

We consider the process 
1 2 0{ ( ) ( ( ), ( ))}tX t X t X t =  which satisfies equation (1). Now, 

we set 
2 1( ) ( ) ( )Y t X t X t= − , then ( )Y t  satisfies the following equation 
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Lemma 2.4. If eq. (1) has a solution then 
2 1( ) ( ) ( ) 0Y t X t X t= −  for all [0, ]t T   almost 

surely. 

Proof. We will also use the contradiction method. Assume that for some 
0 ,    

[0, ] 0inf ( , ) 0.t T Y t  =  Denote 
0inf{ : ( , ) 0}.t Y t = =  For each 1n    we denote 

0

1
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Again using the inequality (6), we have 

                                     ,
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Similar to the argument of  Theorem 2 in [10] we see that the inequality (11) fails for all n 

large enough. This contradiction completes the lemma.                                     

Based on above lemmas we obtain the  main theorem of this paper which is stated as 

follows 

Theorem 2.5. For each  0T   eq. (1) has a unique solution on [0,  ].T   

Proof.  First, from Lemma 2.3, there exists a finite random variable 
0n  such that 

2 2

0

1
( ) ( ) 0n nX t X t

n
−     almost surely for any [0, ].t T   Therefore, the process 

2 2( ) ( ( ), ( ))n n nX t X t X t=  converges almost surely to a limit, called X(t) when n tends to infinity 

and X(t) satisfies eq. (1). This fact together with Lemma (2.4) leads to eq. (1) has a strong 

non- colliding solution. 

Next, we show that eq. (1) has a unique solution in path-wise sense. Let X(t) and  ( )X t   be 

two solutions of eq. (1) on [0, ].T   We have 
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Using the continuous property of the sample paths of X(t) and ( )X t   and Lemma 2.4, we have 

2 10 [0, ] 2 1min { ( , ) ( , ), ( , ) ( , )} 0.t Tm X t X t X t X t   = − −   

This fact together with the Lipschitz condition of b leads  to 
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Similarly, we estimate  2 2( , ) ( , ) .X t X t −  We obtain 
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It follows from Gronwall’s inequality that  
2

1

( , ) ( , ) 0,i i

i

X t X t 
=

− =   for all [0, ].t T  

Therefore, ( , ) ( , )X t X t =  for all [0, ].t T The uniqueness has been concluded.            

3. CONCLUSION 

The main result proved in this paper is the existence and uniqueness of strong non- 

colliding solution in path- wise sense to the two- dimensional fractional non- colliding 

particle systems.  From this result, we can propose a numerical approximation for this system. 
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