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Abstract. In this paper, we consider the stochastic evolution of two particles with electrostatic
repulsion and restoring force which is modeled by a system of stochastic differential
equations driven by fractional Brownian motion where the diffusion coefficients are constant.
This is the simplest case for some classes of non- colliding particle systems such as Dyson
Brownian motions, Brownian particles systems with nearest neighbour repulsion. We will
prove that the equation has a unique non- colliding solution in path- wise sense.

Keywords: stochastic differential equation, fractional Brownian motion, non- colliding
particle systems.

© 2020 University of Transport and Communications

1. INTRODUCTION

It is known that the systems of SDEs driven by standard Brownian motion describing
positions of d ordered particles evolving in R has the form

dx (t) = {z(t)y—:xj(t) + b,(t,x(t))}dt + %:a”(x(t))dwj (t),i =1.d, (1

i X

where W = (W, (t),W, (t),..., W, (t)) is a m - dimensional standard Brownian. The system of
SDEs (2) is a type of SDEs whose solution stays in a domain which has been studied by many
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authors because of its important applications in physics, biology and finance [1]. In
mathematical physics, the process x(t) is used to model systems of d non-colliding particles
with electrostatic repulsion and restoring force. It contains Dyson Brownian Motions, Squared
Bessel particle systems, Jacobi particle systems, non-colliding Brownian and Squared Bessel
particles, potential-interacting Brownian particles and other particle systems crucial in
mathematical physics and physical statistics [2, 3]. The existence and uniqueness of a strong
non-colliding solution to such kind of systems have been intensively studied by many authors
([4, 5, 6, 7] and the references therein). But there are no results in the case of fractional non-
colliding particles.

The main aim of this paper is to study the two- dimensional fractional non-
colliding particle systems

_ /4 S H
dX, (t) = (—Xl(t) X0 +b(t, X (t))jdt +JZ;0'1].dBj (t),

Y S H
dX,(t)=| ———+hb (t,X(t))jdt+ o,.dB (t).
2 (xz(t)—xl(o 2 2,718,
where X (0) = (X,(0), X,(0)) e A, ={x=(x,X%,)" e R*:x,<x,} almost surely (a.s) and
B={B"(t),t >0}= (B (t), B} (t),..., B! (t))" is an m-dimensional fractional Brownian motion
with the Hurst parameter H € (3,1) defined on a complete probability space (€, F,P) with a
filtration {F,t>0} satisfying the usual conditions. We prove that equation (1) has a unique

non- colliding solution in path-wise sense. To the best of my knowledge, this is the first paper
to discuss the fractional non- colliding particle systems.

(2)

2. THE EXISTENCE AND UNIQUENESS OF THE SOLUTION

Fix T > 0 and we consider eqg. (1) on the interval [0, T]. We suppose that the coefficients
b : [0;+00)xR* - R are measurable functions and there exist positive constants L, C such
that following conditions hold

(i) X (0)eA, almost surely.

(ii) »>0.
(iii) b (t,x), i = 1,2 are globally Lipschitz continuous with respect to x, that is

SUP; |bi (t,x)-Db(t, y)| < L|X_ Y|,

forall x,yeR?* and t [0, T].
(iv) b.(t, x), i= 1,2 are sub-linearly growth with respect to x, that is

sup,_, [b; (t, X)| < C(@+|x)),

forall xeR? and t<[0,T].
(v) b(t,x)<b,(t,x) forall xe R* and t [0, T].
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Denote avb=max{a,b} and aAab=min{a,b}. For each neN, we consider the
following fractional SDEs

X/ (t) = /4 —+b,(6X") dt+Zm10'ldejH (),
(Xln(t)—xzn(t))/\F 1=
3)
dX 2 (t) = Y +0,(L X" (V) dt+_zm;azdejH (),

(KO- X/ O)v

where X"(0) = (X"(0), X7 (0)) € A,. Foreach ne Nand x=(x,,%,) we set

(%) =————+b,(t, %),
(X1 - Xz) /\F

£7(t, %) =+1+b2(t,x).
(X, —%) VH

Lemma 2.1. Foreach T >0, eq. (3) has a unique solution on [0, T].

Proof: Using the estimate |avc—bvc|<|a—b|,Jarc—bAac|<|a-b], itis straightforward to
verify that

£ () - £t y)| < (V2yn? + L) [x -],

forall x=(x;,x,) and t €[0,T] and

£ (t, )| < ny + C(L+]X).

It means that coefficients of eq. (3) satisfy Lipschitz continuity and boundedness
condition. Hence it follows from Theorem 2.1 in [8] that eq. (3) has a unique solution on the
interval [0,T].

We recall a result on the modulus of continuity of trajectories of fractional Brownian
motion ([9])
Lemma 2.2. Let B={B" (t),t >0} be a fractional Brownian motion of Hurst parameter
He(0,1). Then for every O<e< H and T > 0, there exists an event Q . with

P(©,;) = 1 and a positive random variable 7, such that E( p) <oo forall pe[l, o)

and for all s,t €[0,T],

ng,T

‘B“ (t,w)—B" (S,a))‘ <1, + (@) |t—s|H_‘€, forany weQ,
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We denote
7, =inf{t e [0,T1:| X (0) - X3 (O] < 3AT.

In order to prove that eq. (1) has a unique solution on [0,T], we need the following
lemma.
Lemma 2.3. The sequence z, is non-decreasing, and for almost all @€ Q, 7, (w)=T for n
large enough.
Proof. Using the estimate —(a Ab) =—av —b, from eq. (3) we have

n _ n _ 27 n _ n N _ H
d(Xz (1) X, (t))_((x;(t)—xl"(t))vﬁ+b2(t’x () —by(t, X (t))jdeZ::,(Gz,- o;;)dB; (1)
(4)

We set Y"(t) = X (t) — X[ (t). Eq. (4) becomes

aer @) :(w T X )b xn(t»Jdui(az,- o). O

Then Y"(0)>0 and 7, =inf{t €[0,T]:

Y ()< AT.

It follows from Lemma 2.2 that for any &< (0,H —3), there exist a finite random variable
n,r and anevent Q, . €F which do not depend on n such thatP(Q2_ ) =1, and

m

(0,,-0,,)(B! (t, 0) ~ B! (s,0)| <7, ; (@)|t—s|" *, forany weQ,; and 0<s<t<T. (6)
=1

]

We will adapt the contradiction method in [10]. Assume that for some @, € Q, ;,7,(@,) <T
for all neN. By virtue of the continuity of sample paths of Y", it follows from the definition

of z. thatY"(z,(@,), @) :% and Y"(t,a)o)z% for all t €[0,7,(w,)]. Denote
n 2
K, (@) =sup{t €[0,7, ()] : Y" (t, @) = H}

We have

%SY”(t,a)O) < %, forall t e[x, (@), 7, ()]

In order to simplify our notations, we will omit ¢, in brackets in further formulas. We have

V()Y () == | [Yf—fs)mz(s, X"()-b s X"(s»]ds&(az,- ~0,,)(B] () B} (1)

Kn

This implies
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an:(o_zj _o-ij)(B]H (z,)— BJ!_| (x,

n+ j(Y (7 SR X )b X O ()

Note that for all se[x,,7,]
2y
——+b,(s,X"(s))—b,(s, X"(s) > 4ny.
o) ,(5, X7(s)) —by(s, X"(s) = 4ny
Thenforall n>n, = Y”L(m it follows from eq. (7) that

>(02, -, )(B] (1)~ B () > = +4my (7, =),

This fact together with eq. (6) implies that

775 T

n

o, x| 2%+4n}/(z’n —x,), foralln>n, (8)

By following similar arguments in the proof of Theorem 2 in [10], we see that the inequality
(8) fails for all n large enough. This contradiction completes the proof of the lemma.

We consider the process {X (t) = (X, (t), X, (t))}.., Which satisfies equation (1). Now,
we set Y (t) = X, (t) — X, (t) , then Y (t) satisfies the following equation

d(¥ (1) = ( ()+b(t X (1) -by(t, X(t))jdt+2(02, cy;)dB} (t). (9)

Lemma 2.4. If eq. (1) has a solution then Y (t) = X, (t) — X,(t) >0for all t[0,T] almost
surely.

Proof. We will also use the contradiction method. Assume that for some o, e€Q,
nf_or,Y(t @)=0. Denote z=inf{t:Y(t,)=0} For each nx>1 we denote

vn:sup{t<r:Y(t,a)0)=l}. Since Y has continuous sample paths, O<v, <z<T and
n

Y(t, o) <(0,%) forall te(v,,7). We have

V@)Y ()= - j( +,(5, X (5) - bl(sX(s»}fsé(aﬂ—ai,-)(B;*(r)—B,-“(vn».

Y(s)
Note that for all s€[v,,7]

%mz (s, X () ~by(s, X (s)) = 2ny.

So we have
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N H H 1
Z(O_Zj_aij)(Bj (T)_Bj () ZE%—ZHJ/(T—V”). (10)
j=1

Again using the inequality (6), we have

M.+ r—vn|Hfg 21+2n7/(r—vn). (11)
' n

Similar to the argument of Theorem 2 in [10] we see that the inequality (11) fails for all n
large enough. This contradiction completes the lemma.

Based on above lemmas we obtain the main theorem of this paper which is stated as
follows

Theorem 2.5. Foreach T >0 eq. (1) has a unique solution on [0, T].

Proof.  First, from Lemma 2.3, there exists a finite random variable n, such that

xz”(t)—xz”(t)zni>0 almost surely for any te[0,T].  Therefore, the process
0

X"(t) = (X, (t), X, (t)) converges almost surely to a limit, called X(t) when n tends to infinity

and X(t) satisfies eq. (1). This fact together with Lemma (2.4) leads to eq. (1) has a strong
non- colliding solution.

Next, we show that eq. (1) has a unique solution in path-wise sense. Let X(t) and X (t) be
two solutions of eq. (1) on [0,T]. We have

X, () - X, (t, )| =

t 7/ . 7/ ) B
l( X, (s,0) = X, (S, w) +h(s, X(s,)) X.(5, )~ X, (5 ) b, (s, X (s, a)))jds

<

[ ——

y ~ y t e Y
(Xl(s,a))—Xz(s,a)) Z(S’w)_x_z(s,w)st+ﬂbl(s,X(s,a))) b,(s, X (s, @)|ds.  (12)

Using the continuous property of the sample paths of X(t) and X (t) and Lemma 2.4, we have
m, = min_,+{X, (t, @) — X, (t, @), X2(t, @) — X1(t, 0)} > 0.

This fact together with the Lipschitz condition of b leads to

X, (@)~ X, (t,0)| < j 7|xu(5,0)Xa(s w)n)qz_(xl(s’ @)= Xa(s.0) +j L|X (s.0) - X (s, ).

(13)

Similarly, we estimate ‘Xz(t,a))—x_z(t,a))‘. We obtain

16



Transport and Communications Science Journal, Vol. 71, Issue 1 (01/2020), 11-17

i\xi (t, ®) —Z(t,a))\ < [%+ ZLJjZZ‘,\Xi(S, w) - X, (s, a))‘ds. (14)

o i=1
It follows from Gronwall’s inequality that

Zz:\xi(t,w)-Z(t,w)\:o, for all t [0, T].

Therefore, X (t,w)= X (t,w) forall te [0,T]. The uniqueness has been concluded.

3. CONCLUSION

The main result proved in this paper is the existence and uniqueness of strong non-
colliding solution in path- wise sense to the two- dimensional fractional non- colliding
particle systems. From this result, we can propose a numerical approximation for this system.
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