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Abstract. Global Navigation Satellite System (GNSS) time series are widely used for 

structural health monitoring (SHM) and deformation analysis, but real-world recordings 

frequently contain short and long contiguous gaps that degrade downstream interpretation. 

This study addresses the challenge of accurate imputation for GNSS displacement series by 

proposing a self-supervised learning framework that trains models directly on real, unlabelled 

data using contiguous-span masking. We evaluate four neural architectures (ANN, CNN, 

GRU, LSTM) under a unified pipeline comprising signal denoising (moving-average, 

Kalman smoothing, Haar wavelet), sliding-window segmentation, Z-score normalization, 

and middle-region masking. Experiments use a year-long 10-minute-sampled dataset from 

the Can Tho cable-stayed bridge (sensor can519501, x/y/z components) and assess 

reconstruction quality via R², MAE, and MSE on withheld masked segments. Results indicate 

that recurrent architectures, particularly LSTM, produce the most faithful reconstructions: 

LSTM attains the highest validation R² (≈0.948) and the lowest MAE (≈0.137) and MSE 

(≈0.052) among tested models, while GRU offers competitive performance and CNN/ANN 

show substantially weaker recovery. These findings demonstrate that masking-based self-

supervision is an effective strategy for GNSS gap recovery and that LSTM-like sequence 

models are well suited to capture the long-range temporal dependencies in bridge 

displacement data. The proposed approach enhances the reliability and continuity of GNSS-

derived time series for structural monitoring and can inform future multi-sensor fusion and 

uncertainty quantification work. 
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1. INTRODUCTION  

Global Navigation Satellite System (GNSS) observations have become a fundamental data 

source for monitoring ground deformation, structural displacement, and infrastructure stability. 

Their ability to provide continuous, high-precision, and long-term positioning makes GNSS 

time series indispensable in applications such as structural-health monitoring of cable-stayed 

bridges, geohazard assessment, and real-time deformation tracking [1,2]. However, the 

reliability of these applications strongly depends on the completeness and continuity of the 

recorded time series. Missing data caused by signal obstruction, satellite-geometry variations, 

multipath effects, equipment malfunction, or transmission interruptions pose a major challenge. 

These gaps may appear as short random losses or long contiguous outages, and they can 

significantly reduce the accuracy of displacement estimation, noise modelling, and subsequent 

engineering interpretation [3]. Unlike conventional sensor data, GNSS time series are 

characterized by strong temporal autocorrelation, multipath-induced noise, and nonlinear drift 

components, which make the imputation of missing values substantially more challenging. 

Traditional imputation methods, including linear interpolation, spline fitting, K-Nearest 

Neighbours (KNN), and Kalman filtering, offer reasonable performance for smooth temporal 

patterns or short-duration gaps [4,5]. Yet, they often struggle with the complex characteristics 

of GNSS time series, which include non-linear temporal evolution, intermittent jumps, 

multipath-induced fluctuations, long periods of missing data, and strong multi-scale 

dependencies [5]. Moreover, as modern GNSS monitoring networks produce higher-frequency 

and multi-station observations, classical statistical approaches become increasingly inadequate 

for ensuring high-fidelity reconstruction of missing segments. 

To overcome these challenges, deep learning has emerged as a powerful alternative. 

Recurrent neural networks (RNN), particularly Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRU), have demonstrated capabilities in learning temporal dependencies, 

capturing dynamic trends in sequential data, and handling missing-value imputation tasks more 

effectively than many classical methods [6,7]. Convolutional neural networks (CNN) and 

attention-based models provide additional advantages in parallelization and in modeling long-

range interactions. Despite these advances, supervised deep learning for imputation is 

inherently limited by the lack of ground-truth labels for missing GNSS data and the difficulty 

of obtaining extensive annotated datasets that represent diverse outage scenarios [8]. 

Self-supervised learning (SSL) addresses this bottleneck by enabling models to learn 

meaningful latent representations directly from raw, unlabeled data through pretext tasks such 

as masking, reconstruction, and contrastive learning [9]. These approaches reduce dependency 

on large labelled datasets and have shown significant promise in time-series domains [10]. 

Masking-based SSL is particularly well matched to GNSS applications: the artificial masks 

applied during training closely mimic real-world GNSS data outages, allowing models to 

implicitly learn temporal dependencies, long-range correlations, and noise characteristics. 

Recent SSL-based imputation frameworks such as Transformer-based architectures and 

diagonally masked self-attention mechanisms have shown promising results in multivariate 

sensor time series [11,12,13,14]. However, their potential for GNSS time-series imputation 

remains largely unexplored. Two key gaps persist in existing literature, including: 

(1) No comparative study is conducted to assess how different deep neural architectures 

perform under a unified SSL framework specifically for GNSS time-series reconstruction. 

Existing GNSS studies predominantly rely on filtering, regression, and classical machine 



Transport and Communications Science Journal, Vol.77, Issue 01 (01/2026), 127-141 

129 

learning, with limited integration of recent advances in SSL-driven models;  

(2) The influence of different masking strategies such as random masking, span masking, 

and block-based masking on the robustness and generalization performance of SSL models 

has not been systematically evaluated for GNSS applications, despite their critical role in 

shaping model behavior. 

To address these research gaps, this study proposes a self-supervised deep-learning 

framework tailored for GNSS time-series imputation. We systematically evaluate multiple 

neural architectures, including LSTM, GRU, CNN, and fully connected artificial neural 

networks (ANN), under a range of masking strategies that simulate realistic GNSS missing-

data patterns. Our objectives are:  

(1)  to benchmark and compare the imputation performance of these architectures in terms 

of accuracy, robustness, and computational efficiency; and  

(2)  to investigate how various SSL masking strategies influence model learning and 

generalization.  

Through extensive experiments and rigorous evaluation metrics, we demonstrate that SSL-

based deep-learning models consistently outperform traditional interpolation and filtering 

methods, particularly for long, irregular, or noise-affected gaps. The significance of this 

research extends beyond GNSS monitoring: the findings provide deeper insights into the 

applicability of SSL for high-integrity geospatial time series, offering methodological guidance 

for next-generation deformation monitoring systems and sensor networks. Overall, this work 

contributes to advancing the reliability, continuity, and analytical value of GNSS-derived time 

series through an integrated self-supervised learning approach. 

2. METHODOLOGY 

2.1. Dataset overview 

This study uses a dataset collected from a dense network of GNSS sensors deployed for 

structural health monitoring (SHM) of Can Tho cable-stayed bridge in Vietnam. The bridge 

spans the Hau River in southern Vietnam, with a total length of 2,750 m, a main span of 550 m, 

and towers reaching 171 m in height. Its SHM system has been in operation since 2010, 

incorporating not only Global Positioning System (GPS) equipment but also various sensors, 

including temperature sensors, anemometers, and accelerometers.  

The GPS subsystem comprises nine rover receivers (located at characteristic locations such 

as the tops of the two towers, on the main beam, at some pillars) and two base stations (located 

near the system management office (1km away) and at the top of the pile near the North tower 

pillar). This network provides continuous, high-precision displacement measurements and 

redundancy across multiple structural components. The GPS devices used are Leica GMX 902 

units with the accuracy parameters indicated is (±10mm ± 1ppm) in terms of ground position 

and (±20mm ± 1ppm) in height. The frequency of GPS signal reception is 20Hz, and the 

monitoring data is stored as data averaging 1 minute, 10 minutes, 1 hour and 1 day. 

For the analyses presented in this study, a representative GNSS sensor was selected: 

can519501, which includes three displacement components (x, y, z). This sensor was chosen 

because it offers a long, continuous, and high-quality time series suitable for evaluating the 

proposed self-supervised reconstruction framework. 
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Data were continuously recorded throughout 2017, from January 1st to December 30th, at 

a sampling interval of 10 minutes, resulting in 144 samples per day. The dataset provides a rich 

temporal resolution suitable for detailed time-series analysis and imputation tasks. 

2.2. Data structure and format 

The dataset was acquired in CSV format, spanning multiple columns representing 

measurements from various sensors and corresponding quality flags. The primary components 

of the dataset consisted of:  

(1)  Temporal Component: Timestamps formatted as YYYYMMDDHHMMSS integers, 

providing precise temporal resolution for each measurement. 

(2)  Measurement Data: Individual measurements from GPS sensors including coordinates 

(x, y, z); Each measurement was recorded as floating-point values. 

(3)  Quality Indicators: Flag values (0 or 1) associated with each measurement; Missing 

data indicated by -9999 sentinel values.   

2.3. Preprocessing pipeline 

The data preprocessing approach involved a meticulous validation and cleaning strategy to 

ensure high-quality input for self-supervised learning. We systematically address data integrity 

through a carefully designed workflow that identifies and mitigates potential measurement 

inconsistencies. The workflow includes signal denoising, sliding-window segmentation, 

window filtering, and normalization.  

2.3.1. Signal denoising 

The GNSS signal denoising pipeline consists of two stages designed to reduce noise while 

preserving the signal’s dynamic structure (Fig. 1). The first stage applies a weighted moving-

average filter with a 9-sample window to remove high-frequency noise and stabilize the signal. 

The second stage combines Kalman smoothing, using a constant-velocity model, with a three-

level Haar wavelet denoising; the Kalman filter provides optimal state estimates in the temporal 

domain, while the wavelet step removes residual noise via soft-thresholding based on the 

median absolute deviation (MAD). This combination yields a smooth, low-noise signal that still 

preserves the physical characteristics required for subsequent feature extraction and modelling. 

 

Figure 1. GNSS signal denoising pipeline. 
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2.3.2. Sliding window segmentation, window filtering, and normalization 

During data preparation, the GNSS time series are segmented using a sliding-window 

mechanism, filtered by data completeness, and normalized before being fed to the self-

supervised model (Fig. 2). This procedure ensures stable-quality inputs that capture the relevant 

dynamic features and meet the requirements of reconstruction-based learning. 

First, the observation series are partitioned into consecutive segments via sliding windows 

of length 𝑊 = 100 with stride 𝑆 = 2. The number of windows is given by:  

𝑁 = 1 +  
𝑇−𝑊

𝑆
         (1) 

where 𝑇  is the total number of time stamps. Each window maps to an index set 𝐼𝑖 =
{ 𝑖𝑆, 𝑖𝑆 + 1,  … , 𝑖𝑆 + 𝑊 − 1 } , producing overlapping segments that preserve temporal 

continuity.  

Next, each window is evaluated for its data completeness ratio using a validity mask 

mask = ¬NaN(𝑋). Let 𝑥𝑡,𝑓 denote the value of feature 𝑓 at time index 𝑡. The completeness 

ratio of window 𝑖 is computed as: 

            𝑟𝑖 =
1

𝑊𝐹
∑ ∑ 1(𝑥𝑡,𝑓 ≠ 𝑁𝑎𝑁)𝐹

𝑓=1
𝑊
𝑡=1               (2) 

with 𝐹 = 3 features (x, y, z). Only windows satisfying 𝑟𝑖 ≥ 0.95 and containing no NaNs 

are retained. 

To ensure statistical stability, all valid windows are normalized using Z-score 

normalization. The mean and standard deviation are computed across the entire set of windows 

as: 

𝜇𝑓 = E[𝑋:,:,𝑓],        𝜎𝑓 = √Var[𝑋:,:,𝑓]    (3) 

and each value is transformed according to: 

                       𝑋𝑡,𝑓
′ =

𝑋𝑡,𝑓−𝜇𝑓

𝜎𝑓
                 (4) 

The windows are then randomly shuffled and split into training and validation sets with a 

fixed random seed at an 85%–15% ratio to ensure a stable data distribution independent of 

temporal order. 

Finally, a contiguous-span masking mechanism is applied to support self-supervised 

learning. This strategy simulates continuous data loss commonly observed in GNSS networks, 

where sensor failures or transmission interruptions often produce consecutive missing intervals. 

For each window, up to two masked spans may be generated. Each span is instantiated with 

probability 0.6, with its length sampled uniformly at random from 4 to 10 time steps; the start 

position is chosen randomly within the central region of the window so that contextual data at 

both ends remain available. All values within a span are set to 0 and the mask is represented in 

binary form as mask[𝑠: 𝑒] = 1. The model input is formed as: 

𝑋masked = 𝑋 ∗ (1 − mask),  𝑋̃ = [ 𝑋masked, mask ]                             (5) 

 where * denotes element-wise multiplication. 
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The choice of the span masking probability 𝑝 =
0.6is motivated by the principle of task-difficulty 

balancing in masked self-supervised learning. A 

masking probability that is too low results in an 

insufficient number of masked points, causing the 

model to learn only local dependencies, whereas an 

excessively high masking probability substantially 

reduces the remaining contextual information, 

thereby hindering the reconstruction process. Recent 

studies have shown that masking ratios in the range 

of approximately 0.5–0.6 represent a common and 

stable choice for masked modeling of time series, 

including SimMTM [15], TI-MAE [16], NCDE-

based framework [17], and TimeXer [18]. A 

comparative summary of masking probabilities and 

span configurations used in related studies and in the 

proposed method is provided in Table 1. 

Regarding the span length, the interval 𝑙 ∈
[4, 10] is selected to avoid overly short spans that 

would lead to a trivial imputation task, while 

simultaneously preventing excessively long spans 

that would disrupt temporal contextual continuity. In 

the context of GNSS data with a 10-minute sampling 

interval, this range corresponds to 40–100 minutes, 

which is consistent with the duration of data gaps 

commonly observed in practice. 

Moreover, given a typical window size of 

𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 = 100 , a span length of 4–10 time 

steps accounts for approximately 4–10% of the 

window length, creating a masking level that is 

sufficiently challenging for the model while still 

preserving adequate contextual information for 

accurate inference. 

If no span is randomly generated for a window, 

a short default span is added to guarantee that every 

window contains a reconstruction task. This design 

balances task difficulty and model stability during 

training and forces the model to learn the important 

temporal and spatial dependencies required to restore 

GNSS signals. Figure 2. Sliding window segmentation, 

window filtering, and normalization, and 

contiguous-span masking  
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Table 1. Comparison of masking parameters between the proposed method and related studies. 

Study Mask ratio / probability Span length 

SimMTM [15] ≈ 0.5 ≈ 5–10 

TI-MAE [16] ≈ 0.5 ≈ 10–15 

NCDE-based Framework [17] 0.5 5 (contiguous) 

TimeXer [18] 0–99% (evaluation) – 

Proposed method 0.6  4–10  

2.4. Neural network architectures 

To evaluate the capability of modeling and imputing missing values in GNSS time series, 

four representative neural network architectures were implemented: ANN, GRU, LSTM, and 

CNN. These models embody different perspectives on sequence representation learning, 

ranging from feedforward networks without temporal memory to recurrent networks with 

gating mechanisms and convolutional architectures designed for temporal feature extraction. 

All models employ the same input and output format: (batch_size, 100, 2F) for the input and 

(batch_size,100, F) for the output, where F denotes the number of features. 

2.4.1. Artificial Neural Network   

The ANN is utilized as a baseline model and implemented in a standard feedforward 

configuration. In this architecture, each time step 𝑡is processed as an independent sample; 

consequently, the network does not leverage temporal correlations across the sequence. Let 

𝐱𝑡denote the input vector at time step 𝑡. The ANN predicts the corresponding output through a 

nonlinear mapping expressed as [19]: 

𝑦𝑡̂ = σ(𝑊2 ϕ(𝑊1𝑥𝑡 + 𝑏1) + 𝑏2)    (6) 

where 𝜙(⋅) is the ReLU activation function, and {𝑊1, 𝑊2, 𝑏1, 𝑏2} are the trainable 

parameters of the network. Owing to its simplicity, the ANN offers rapid training and low 

computational cost. However, the lack of temporal modeling capacity generally leads to inferior 

performance in sequence-based imputation problems, where continuity and time-dependent 

patterns are essential for accurate reconstruction.  

2.4.2. Gated Recurrent Unit   

The GRU is a modified form of the Recurrent Neural Network (RNN) designed to address 

the vanishing gradient problem while maintaining the ability to capture long-term temporal 

dependencies. It incorporates two gating mechanisms, the reset gate and the update gate, that 

regulate how information is forgotten or preserved across time steps [20]. 

At each time step 𝑡, the GRU computes the reset gate r𝑡 and the update gate z𝑡 through a 

sigmoid activation applied to a linear transformation of the current input x𝑡 and the previous 

hidden state h𝑡−1. The candidate hidden state h̃𝑡 is then obtained by blending the current input 

with a gated version of the past hidden state, followed by a hyperbolic tangent activation. 

Finally, the new hidden state h𝑡 is formed as a convex combination of the previous hidden state 

and the candidate state, where the update gate controls the contribution of each component. 

These operations are summarized as [20]: 

r𝑡 = 𝜎(W𝑟x𝑡 + U𝑟h𝑡−1)     (7) 
z𝑡 = 𝜎(W𝑧x𝑡 + U𝑧h𝑡−1)     (8) 

h̃𝑡 = tanh(Wℎx𝑡 + Uℎ(r𝑡 ∗ h𝑡−1))                (9)  

h𝑡 = (1 − z𝑡) ∗ h𝑡−1 + z𝑡 ∗ h̃𝑡 .             (10) 
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Through this gating structure, the GRU can selectively retain informative temporal patterns 

while discarding irrelevant past states, leading to more stable training behavior and reduced 

computational cost compared with the LSTM architecture. 

2.4.3. Long Short-Term Memory   

The LSTM network extends the GRU by introducing a dedicated cell state c𝑡 , which 

enables more stable preservation of long-term information. At each time step 𝑡, the LSTM uses 

a forget gate f𝑡 to determine which past information to discard, an input gate i𝑡 to regulate how 

new information is stored, and an output gate o𝑡 to control how much of the updated cell state 

contributes to the hidden state. These operations are expressed as [21]: 

f𝑡 = 𝜎(W𝑓x𝑡 + U𝑓h𝑡−1), i𝑡 = 𝜎(W𝑖x𝑡 + U𝑖h𝑡−1)     (11) 

c̃𝑡 = tanh(W𝑐x𝑡 + U𝑐h𝑡−1) , c𝑡 = f𝑡 ∗ c𝑡−1 + i𝑡 ∗ c̃𝑡     (12) 

o𝑡 = 𝜎(W𝑜x𝑡 + U𝑜h𝑡−1), h𝑡 = o𝑡 ∗ tanh (c𝑡)     (13) 

By explicitly separating the cell state from the hidden state, the LSTM captures long-term 

dependencies more effectively than the GRU, though at the cost of higher computational 

complexity and a larger number of parameters. This makes it well suited for modeling GNSS 

time series with strong nonlinear and long-range temporal behavior. 

2.4.4. Convolutional Neural Network   

Unlike recurrent architectures, CNN processes time-series data using one-dimensional 

convolutions, to extract local temporal patterns with high computational parallelism. For an 

input sequence x, the convolutional output at time step 𝑡 is computed as [22]: 

𝑦𝑡 = ∑ 𝑤𝑖  𝑥𝑡−𝑖
𝐾−1
𝑖=0 ,     (14) 

where 𝐾  is the kernel size and 𝑤𝑖  denotes the convolutional weights. Because CNNs 

operate on the entire sequence simultaneously, they enable substantially faster training 

compared with recurrent models. However, their receptive field, the temporal span of context 

each output can access, is fundamentally limited by the kernel size, which restricts their ability 

to capture long-term dependencies. 

2.4.5. Model Configuration Summary 

All four architectures share common training configurations to ensure fair comparison. 

Table 2 summarizes the key architectural hyperparameters for each model. 

ANN Architecture: The feedforward network uses three hidden layers with sizes [64, 128, 

64], forming a bottleneck structure that compresses information before reconstructing the 

output. This architecture processes each timestep independently, making it computationally 

efficient but unable to capture temporal dependencies. 

Recurrent architectures (GRU and LSTM): Both recurrent models employ 2 stacked layers 

with 128 hidden units each. The GRU uses update and reset gates for efficient sequence 

modeling, while LSTM includes additional cell state and forget gate mechanisms. These 

architectures process the entire sequence of 100 timesteps, capturing long-range temporal 

dependencies crucial for GNSS time series. 

CNN architecture: The convolutional network uses 32 channels with kernel size 3, enabling 

local pattern extraction across the temporal dimension. The small kernel size allows fine-

grained feature detection while maintaining computational efficiency. 
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Dropout regularization with rate 0.1 is consistently applied across all models to prevent 

overfitting. The input dimension is 6 (3 features × 2, including mask indicator channels), and 

output dimension is 3 (recovered feature values). 

Table 2. Model architecture hyperparameters. 

Model Type Layers Hidden/Channel Sizes Kernel Dropout 

ANN Feedforward 3 FC [64, 128, 64] - 0.1 

GRU Recurrent 2 GRU + FC [128, 128] → 3 - 0.1 

LSTM Recurrent 2 LSTM + FC [128, 128] → 3 - 0.1 

CNN Convolutional Conv1d stack 32 channels 3 0.1 

 All models are trained with the same training strategy for fair comparison. The shared 

training hyperparameters are summarized in Table 3. 

Table 3. Training hyperparameters. 

Parameter Value Description 

Epochs 200 Maximum training iterations 

Batch size 128 Samples per gradient update 

Learning rate 1×10−3 Initial learning rate 

Weight decay 1×10−4 L2 regularization strength 

Optimizer AdamW Decoupled weight decay optimizer 

LR schedule Cosine + Warmup 20 epoch warmup, then cosine decay 

Early stopping Enabled Patience: 15 epochs, min_delta: 1×10−5 

2.5. GNSS Self-Supervised Training Pipeline 

Fig. 3 shows GNSS SSL pipeline, including preprocessing, sliding-window generation, 

masking, model training, and evaluation. The workflow integrates denoising, window 

construction, and middle-region masking to enable reconstruction of missing segments in a self-

supervised manner. The figure provides an overview of how raw GNSS data is transformed into 

training-ready sequences and evaluated through synthesized and real gap recovery. 

 

Figure 3. GNSS self-supervised learning pipeline. 

Before model evaluation, the GNSS time-series data are preprocessed through smoothing, 

Kalman filtering, and wavelet denoising, as illustrated in Fig. 4. The cleaned signals are then 

temporally split into Training and Validation sets, where contiguous masked segments are 

created to form “marked samples” (Fig. 5), enabling ground-truth-based assessment. Using the 

Masked-Region Protocol, ANN, GRU, LSTM, and CNN models predict only the intentionally 

hidden intervals, and their outputs are directly compared against the withheld ground truth. This 

evaluation design allows reconstruction performance to be assessed entirely on real GNSS data 

while maintaining fairness and reproducibility across all model architectures. 
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Figure 4. GNSS preprocessing pipeline for sample can519501x, including moving-average 

smoothing, Kalman filtering, wavelet denoising, and the final combined output. 

  

Figure 5. Example of a marked validation sample showing contiguous masked regions used for the 

Masked-Region Evaluation Protocol. 

3. EVALUATION AND RESULTS 

3.1. Evaluation Metrics 

3.1.1. Coefficient of Determination (R²) 

𝑅2 = 1 −
SS𝑟𝑒𝑠

SS𝑡𝑜𝑡
       (15) 

This metric measures how much of the variance in the true signal is explained by the 

reconstructed signal. Higher values indicate better reconstruction quality [23]. 

3.1.2. Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖

𝑝𝑟𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒|𝑁
𝑖=1       (16) 
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MAE represents the average deviation between predicted and true values, expressed in the 

same physical units as the GNSS displacement [23]. 

3.1.3. Mean Squared Error (MSE) 

 𝑀𝑆𝐸 =
1

𝑁
(𝑦𝑖

𝑝𝑟𝑒𝑑
− 𝑦𝑖

𝑡𝑟𝑢𝑒) 2     (17) 

MSE penalizes larger errors more strongly and is therefore sensitive to severe 

reconstruction failures or outliers [23]. 

3.2. Experimental Results 

3.2.1. Training Performance 

This subsection presents the comparative evaluation of the four architectures including 

LSTM, GRU, CNN, and ANN based on reconstruction plots, loss-curve behavior, and 

quantitative error metrics. Across the experiments, the LSTM model provides the most accurate 

and stable reconstructions, as reflected in both the visual and numerical assessments. 

  

 

Figure 6. Time-series reconstruction comparison of models, including masked regions. 

Fig. 6 illustrates the reconstruction performance on three representative GNSS segments, 

including masked intervals where the models must infer missing values using only temporal 

context. In all cases, LSTM produces trajectories that are most closely aligned with the Ground 

Truth, capturing both the global trend and fine-scale variations. Within masked regions, LSTM 

maintains consistent phase alignment and amplitude behavior relative to the surrounding 

context, resulting in smooth and physically coherent reconstructions. 

The GRU model also follows the Ground Truth reasonably well, although occasional phase 

shifts and reduced fidelity appear in segments with high-gradient changes. The CNN model 

shows less stable behavior, particularly around the boundaries of masked regions, where it tends 

to overshoot and produce oscillatory artifacts. The ANN baseline yields oversmoothed, nearly 

flat responses that fail to reflect the temporal dynamics of the original signal, indicating its 
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limited capacity for sequence modeling. Overall, the reconstruction plots suggest that recurrent 

models, especially LSTM are better suited for capturing the temporal dependencies present in 

GNSS displacement data. 

 

Figure 7. Training and validation loss curves of LSTM, GRU, and CNN over 200 epochs. 

The comparison of training and validation loss curves (Fig. 7) further supports these 

observations. The LSTM achieves the lowest training and validation losses and exhibits smooth, 

monotonic convergence throughout the full 200-epoch training period. GRU shows comparable 

but consistently higher losses and larger fluctuations, particularly in the early epochs. By 

contrast, the CNN model shows slow and shallow improvement, with its loss plateauing early, 

indicating limited ability to learn long-range temporal relationships. The ANN baseline 

converges quickly to a high-loss regime, consistent with its flatline reconstruction behavior. 

Together, these trends highlight the advantages of the LSTM architecture under the tested 

settings, particularly for reconstructing masked or partially missing GNSS time-series data. 

The quantitative results in Table 4 provide statistical evidence of LSTM’s superiority. 

LSTM achieves the highest R² scores on both training (0.9431) and validation sets (0.9476), 

reflecting the strongest correspondence between predicted and true signals. Correspondingly, 

LSTM also yields the lowest MAE (≈0.137) and MSE (≈0.052) across all experiments. 

The GRU model ranks second, with R² scores around 0.93 and moderately higher 

MAE/MSE values, confirming its solid yet inferior performance compared to LSTM. The CNN 

model shows markedly weaker predictive capability (R² ≈ 0.76 and MAE/MSE nearly five 

times larger), while ANN displays negative R² values, indicating poor learning and total 

inability to model temporal patterns. 

Table 4. Quantitative performance metrics of models on training and validation sets. 

Model Dataset R2 MAE MSE 

GRU 
Train 0.937148 0.143798 0.061454 

Validation 0.934828 0.144287 0.061995 

LSTM 
Train 0.943125 0.139102 0.054305 

Validation 0.947622 0.13676 0.052019 

CNN 
Train 0.768843 0.248892 0.230254 

Validation 0.763774 0.252543 0.245707 

ANN 
Train -0.01409 0.769897 0.98244 

Validation -0.013036 0.77841 1.047807 

The LSTM is the most effective and reliable model for self-supervised GNSS time-series 

reconstruction. It consistently achieves the lowest prediction errors, highest explanatory power, 
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best stability across masked regions, and the most favorable convergence properties. GRU 

remains a competitive alternative, while CNN and ANN are not suitable for this class of tasks. 

The results solidify LSTM as the recommended architecture for downstream applications 

involving GNSS-based displacement reconstruction, SHM, and digital twin modeling. 

3.2.2. Actual Gap Recovery Performance 

 

 

 

Figure 8. Actual gap recovery results for can519501x, can519501y, and can519501z components. 

The recovery results for the actual missing-data segments in the can519501x, can519501y, 

and can519501z components are shown in Fig. 8. Because these gaps correspond to real data 

losses, no Ground Truth is available within the masked intervals. Thus, the evaluation focuses 

on the continuity of the reconstructed signal and whether each model produces estimates that 

remain consistent with the observable trends immediately before and after the gap. 

The LSTM model typically generates smooth and continuous reconstructions, preserving 

the local trend and avoiding abrupt fluctuations within the missing region. The GRU model 

exhibits generally similar behavior, although minor deviations can occasionally be observed 

near the boundaries of the gap. The CNN model tends to produce plateau-like or step-shaped 
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reconstructions, indicating difficulty in extrapolating temporal dynamics when long-range 

context is unavailable. Meanwhile, the ANN model frequently yields nearly constant or weakly 

varying outputs, reflecting its limited capability to infer temporal patterns in the absence of 

direct observations. 

Overall, the models demonstrate distinct reconstruction characteristics under real missing 

data conditions: LSTM tends to maintain smooth transitions across the gap, GRU follows the 

surrounding trend with slight boundary inconsistencies, CNN often produces discontinuities or 

overly simplified representations, and ANN exhibit minimal temporal adaptation. These 

behaviors provide insight into how each architecture responds when required to infer 

unobserved portions of the GNSS time series based solely on contextual information. 

4. CONCLUSION 

GNSS displacement measurements using deep neural networks. The proposed pipeline 

integrates smoothing, Kalman filtering, wavelet denoising, sliding-window segmentation, and 

middle-region masking, enabling model training directly on real GNSS time series without 

requiring synthetic gap generation. Evaluation using the Masked-Region Protocol demonstrated 

that the framework yields consistent and reproducible assessments, allowing models to be 

compared objectively by predicting intentionally hidden segments with ground-truth 

availability. The experimental results revealed distinct reconstruction behaviors across ANN, 

GRU, LSTM, and CNN architectures, underscoring the effectiveness of the self-supervised 

strategy for real-world GNSS gap recovery and its potential applicability within SHM and 

digital twin systems. 

Future research will explore advanced sequence models such as Transformers, Temporal 

Convolutional Networks (TCN), and diffusion-based generative frameworks to further enhance 

long-range temporal modeling. Incorporating multi-sensor fusion combining GNSS with 

accelerometers, IMUs, or vision-based displacement estimation may improve robustness under 

complex environmental and operational conditions. Additionally, adaptive and context-aware 

masking strategies, together with uncertainty quantification, will be investigated to better reflect 

realistic missing-data patterns and provide reliability measures for reconstructed outputs. 

Finally, the proposed method will be validated on long-term field datasets from operational 

bridge monitoring systems, aiming to assess scalability, environmental resilience, and readiness 

for deployment in next-generation SHM and digital twin platforms. 
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