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Abstract. Global Navigation Satellite System (GNSS) time series are widely used for
structural health monitoring (SHM) and deformation analysis, but real-world recordings
frequently contain short and long contiguous gaps that degrade downstream interpretation.
This study addresses the challenge of accurate imputation for GNSS displacement series by
proposing a self-supervised learning framework that trains models directly on real, unlabelled
data using contiguous-span masking. We evaluate four neural architectures (ANN, CNN,
GRU, LSTM) under a unified pipeline comprising signal denoising (moving-average,
Kalman smoothing, Haar wavelet), sliding-window segmentation, Z-score normalization,
and middle-region masking. Experiments use a year-long 10-minute-sampled dataset from
the Can Tho cable-stayed bridge (sensor can519501, x/y/z components) and assess
reconstruction quality via R2, MAE, and MSE on withheld masked segments. Results indicate
that recurrent architectures, particularly LSTM, produce the most faithful reconstructions:
LSTM attains the highest validation R? (=0.948) and the lowest MAE (=0.137) and MSE
(=0.052) among tested models, while GRU offers competitive performance and CNN/ANN
show substantially weaker recovery. These findings demonstrate that masking-based self-
supervision is an effective strategy for GNSS gap recovery and that LSTM-like sequence
models are well suited to capture the long-range temporal dependencies in bridge
displacement data. The proposed approach enhances the reliability and continuity of GNSS-
derived time series for structural monitoring and can inform future multi-sensor fusion and
uncertainty quantification work.

Keywords: self-supervised learning, GNSS time-series imputation, LSTM, structural health
monitoring (SHM), sliding-window masking, cable-stayed bridge.
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1. INTRODUCTION

Global Navigation Satellite System (GNSS) observations have become a fundamental data
source for monitoring ground deformation, structural displacement, and infrastructure stability.
Their ability to provide continuous, high-precision, and long-term positioning makes GNSS
time series indispensable in applications such as structural-health monitoring of cable-stayed
bridges, geohazard assessment, and real-time deformation tracking [1,2]. However, the
reliability of these applications strongly depends on the completeness and continuity of the
recorded time series. Missing data caused by signal obstruction, satellite-geometry variations,
multipath effects, equipment malfunction, or transmission interruptions pose a major challenge.
These gaps may appear as short random losses or long contiguous outages, and they can
significantly reduce the accuracy of displacement estimation, noise modelling, and subsequent
engineering interpretation [3]. Unlike conventional sensor data, GNSS time series are
characterized by strong temporal autocorrelation, multipath-induced noise, and nonlinear drift
components, which make the imputation of missing values substantially more challenging.

Traditional imputation methods, including linear interpolation, spline fitting, K-Nearest
Neighbours (KNN), and Kalman filtering, offer reasonable performance for smooth temporal
patterns or short-duration gaps [4,5]. Yet, they often struggle with the complex characteristics
of GNSS time series, which include non-linear temporal evolution, intermittent jumps,
multipath-induced fluctuations, long periods of missing data, and strong multi-scale
dependencies [5]. Moreover, as modern GNSS monitoring networks produce higher-frequency
and multi-station observations, classical statistical approaches become increasingly inadequate
for ensuring high-fidelity reconstruction of missing segments.

To overcome these challenges, deep learning has emerged as a powerful alternative.
Recurrent neural networks (RNN), particularly Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU), have demonstrated capabilities in learning temporal dependencies,
capturing dynamic trends in sequential data, and handling missing-value imputation tasks more
effectively than many classical methods [6,7]. Convolutional neural networks (CNN) and
attention-based models provide additional advantages in parallelization and in modeling long-
range interactions. Despite these advances, supervised deep learning for imputation is
inherently limited by the lack of ground-truth labels for missing GNSS data and the difficulty
of obtaining extensive annotated datasets that represent diverse outage scenarios [8].

Self-supervised learning (SSL) addresses this bottleneck by enabling models to learn
meaningful latent representations directly from raw, unlabeled data through pretext tasks such
as masking, reconstruction, and contrastive learning [9]. These approaches reduce dependency
on large labelled datasets and have shown significant promise in time-series domains [10].
Masking-based SSL is particularly well matched to GNSS applications: the artificial masks
applied during training closely mimic real-world GNSS data outages, allowing models to
implicitly learn temporal dependencies, long-range correlations, and noise characteristics.
Recent SSL-based imputation frameworks such as Transformer-based architectures and
diagonally masked self-attention mechanisms have shown promising results in multivariate
sensor time series [11,12,13,14]. However, their potential for GNSS time-series imputation
remains largely unexplored. Two key gaps persist in existing literature, including:

(1) No comparative study is conducted to assess how different deep neural architectures
perform under a unified SSL framework specifically for GNSS time-series reconstruction.
Existing GNSS studies predominantly rely on filtering, regression, and classical machine
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learning, with limited integration of recent advances in SSL-driven models;

(2) The influence of different masking strategies such as random masking, span masking,
and block-based masking on the robustness and generalization performance of SSL models
has not been systematically evaluated for GNSS applications, despite their critical role in
shaping model behavior.

To address these research gaps, this study proposes a self-supervised deep-learning
framework tailored for GNSS time-series imputation. We systematically evaluate multiple
neural architectures, including LSTM, GRU, CNN, and fully connected artificial neural
networks (ANN), under a range of masking strategies that simulate realistic GNSS missing-
data patterns. Our objectives are:

(1) to benchmark and compare the imputation performance of these architectures in terms
of accuracy, robustness, and computational efficiency; and

(2) to investigate how various SSL masking strategies influence model learning and
generalization.

Through extensive experiments and rigorous evaluation metrics, we demonstrate that SSL-
based deep-learning models consistently outperform traditional interpolation and filtering
methods, particularly for long, irregular, or noise-affected gaps. The significance of this
research extends beyond GNSS monitoring: the findings provide deeper insights into the
applicability of SSL for high-integrity geospatial time series, offering methodological guidance
for next-generation deformation monitoring systems and sensor networks. Overall, this work
contributes to advancing the reliability, continuity, and analytical value of GNSS-derived time
series through an integrated self-supervised learning approach.

2. METHODOLOGY

2.1. Dataset overview

This study uses a dataset collected from a dense network of GNSS sensors deployed for
structural health monitoring (SHM) of Can Tho cable-stayed bridge in Vietnam. The bridge
spans the Hau River in southern Vietnam, with a total length of 2,750 m, a main span of 550 m,
and towers reaching 171 m in height. Its SHM system has been in operation since 2010,
incorporating not only Global Positioning System (GPS) equipment but also various sensors,
including temperature sensors, anemometers, and accelerometers.

The GPS subsystem comprises nine rover receivers (located at characteristic locations such
as the tops of the two towers, on the main beam, at some pillars) and two base stations (located
near the system management office (1km away) and at the top of the pile near the North tower
pillar). This network provides continuous, high-precision displacement measurements and
redundancy across multiple structural components. The GPS devices used are Leica GMX 902
units with the accuracy parameters indicated is (x10mm + 1ppm) in terms of ground position
and (x20mm £ 1ppm) in height. The frequency of GPS signal reception is 20Hz, and the
monitoring data is stored as data averaging 1 minute, 10 minutes, 1 hour and 1 day.

For the analyses presented in this study, a representative GNSS sensor was selected:
can519501, which includes three displacement components (X, y, z). This sensor was chosen
because it offers a long, continuous, and high-quality time series suitable for evaluating the
proposed self-supervised reconstruction framework.
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Data were continuously recorded throughout 2017, from January 1st to December 30th, at
a sampling interval of 10 minutes, resulting in 144 samples per day. The dataset provides a rich
temporal resolution suitable for detailed time-series analysis and imputation tasks.

2.2. Data structure and format

The dataset was acquired in CSV format, spanning multiple columns representing
measurements from various sensors and corresponding quality flags. The primary components
of the dataset consisted of:

(1) Temporal Component: Timestamps formatted as YYYYMMDDHHMMSS integers,
providing precise temporal resolution for each measurement.

(2) Measurement Data: Individual measurements from GPS sensors including coordinates
(X, y, z); Each measurement was recorded as floating-point values.

(3) Quality Indicators: Flag values (0 or 1) associated with each measurement; Missing
data indicated by -9999 sentinel values.

2.3. Preprocessing pipeline

The data preprocessing approach involved a meticulous validation and cleaning strategy to
ensure high-quality input for self-supervised learning. We systematically address data integrity
through a carefully designed workflow that identifies and mitigates potential measurement
inconsistencies. The workflow includes signal denoising, sliding-window segmentation,
window filtering, and normalization.

2.3.1. Signal denoising

The GNSS signal denoising pipeline consists of two stages designed to reduce noise while
preserving the signal’s dynamic structure (Fig. 1). The first stage applies a weighted moving-
average filter with a 9-sample window to remove high-frequency noise and stabilize the signal.
The second stage combines Kalman smoothing, using a constant-velocity model, with a three-
level Haar wavelet denoising; the Kalman filter provides optimal state estimates in the temporal
domain, while the wavelet step removes residual noise via soft-thresholding based on the
median absolute deviation (MAD). This combination yields a smooth, low-noise signal that still
preserves the physical characteristics required for subsequent feature extraction and modelling.

RAW GNSS STAGE 2: ADVANCED
SIGNAL INPUT DENOISING & DYNAMIC
(Noisy Data) ESTIMATION
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SMOOTHER
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Velocity Model,
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Figure 1. GNSS signal denoising pipeline.
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2.3.2. Sliding window segmentation, window filtering, and normalization

During data preparation, the GNSS time series are segmented using a sliding-window
mechanism, filtered by data completeness, and normalized before being fed to the self-
supervised model (Fig. 2). This procedure ensures stable-quality inputs that capture the relevant
dynamic features and meet the requirements of reconstruction-based learning.

First, the observation series are partitioned into consecutive segments via sliding windows
of length W = 100 with stride S = 2. The number of windows is given by:
N=1+-"= (1)
where T is the total number of time stamps. Each window maps to an index set I; =
{iS,iS+1, ...,iS+ W —1}, producing overlapping segments that preserve temporal
continuity.

Next, each window is evaluated for its data completeness ratio using a validity mask
mask = =NaN(X). Let x; ; denote the value of feature f at time index t. The completeness
ratio of window i is computed as:

1
T = WZI{Q YF_11(x, s # NaN) 2

with F = 3 features (X, y, z). Only windows satisfying r; = 0.95 and containing no NaNs
are retained.

To ensure statistical stability, all valid windows are normalized using Z-score
normalization. The mean and standard deviation are computed across the entire set of windows

as:
Hf = E[X:,:,f]' Y Var[X:,:,f] (3)

and each value is transformed according to:

1 _ Xef—Uf

Xer == (4)

The windows are then randomly shuffled and split into training and validation sets with a

fixed random seed at an 85%—15% ratio to ensure a stable data distribution independent of
temporal order.

Finally, a contiguous-span masking mechanism is applied to support self-supervised
learning. This strategy simulates continuous data loss commonly observed in GNSS networks,
where sensor failures or transmission interruptions often produce consecutive missing intervals.
For each window, up to two masked spans may be generated. Each span is instantiated with
probability 0.6, with its length sampled uniformly at random from 4 to 10 time steps; the start
position is chosen randomly within the central region of the window so that contextual data at
both ends remain available. All values within a span are set to 0 and the mask is represented in
binary form as mask[s: e] = 1. The model input is formed as:

Xmasked = X * (1 — mask), X= [ Xmasked, mask | (5)
where * denotes element-wise multiplication.
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The choice of the span masking probability p =
0.6is motivated by the principle of task-difficulty
balancing in masked self-supervised learning. A
masking probability that is too low results in an
insufficient number of masked points, causing the
model to learn only local dependencies, whereas an
excessively high masking probability substantially
reduces the remaining contextual information,
thereby hindering the reconstruction process. Recent
studies have shown that masking ratios in the range
of approximately 0.5-0.6 represent a common and
stable choice for masked modeling of time series,
including SIMMTM [15], TI-MAE [16], NCDE-
based framework [17], and TimeXer [18]. A
comparative summary of masking probabilities and
span configurations used in related studies and in the
proposed method is provided in Table 1.

Regarding the span length, the interval [ €
[4,10] is selected to avoid overly short spans that
would lead to a trivial imputation task, while
simultaneously preventing excessively long spans
that would disrupt temporal contextual continuity. In
the context of GNSS data with a 10-minute sampling
interval, this range corresponds to 40-100 minutes,
which is consistent with the duration of data gaps
commonly observed in practice.

Moreover, given a typical window size of
window_size = 100, a span length of 4-10 time
steps accounts for approximately 4-10% of the
window length, creating a masking level that is
sufficiently challenging for the model while still
preserving adequate contextual information for
accurate inference.

If no span is randomly generated for a window,
a short default span is added to guarantee that every
window contains a reconstruction task. This design
balances task difficulty and model stability during
training and forces the model to learn the important
temporal and spatial dependencies required to restore
GNSS signals.
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Table 1. Comparison of masking parameters between the proposed method and related studies.

Study Mask ratio / probability Span length
SIMMTM [15] ~ 0.5 ~ 5-10
TI-MAE [16] ~ 0.5 ~ 10-15
NCDE-based Framework [17] 0.5 5 (contiguous)
TimeXer [18] 0-99% (evaluation) —
Proposed method 0.6 4-10

2.4. Neural network architectures

To evaluate the capability of modeling and imputing missing values in GNSS time series,
four representative neural network architectures were implemented: ANN, GRU, LSTM, and
CNN. These models embody different perspectives on sequence representation learning,
ranging from feedforward networks without temporal memory to recurrent networks with
gating mechanisms and convolutional architectures designed for temporal feature extraction.
All models employ the same input and output format: (batch_size, 100, 2F) for the input and
(batch_size, 100, F) for the output, where F denotes the number of features.

2.4.1. Artificial Neural Network

The ANN is utilized as a baseline model and implemented in a standard feedforward
configuration. In this architecture, each time step tis processed as an independent sample;
consequently, the network does not leverage temporal correlations across the sequence. Let
xdenote the input vector at time step t. The ANN predicts the corresponding output through a
nonlinear mapping expressed as [19]:

Ve = o(W, d(Wyx, + by) + by) (6)

where ¢(-) is the ReLU activation function, and {W;,W,, b;,b,} are the trainable
parameters of the network. Owing to its simplicity, the ANN offers rapid training and low
computational cost. However, the lack of temporal modeling capacity generally leads to inferior
performance in sequence-based imputation problems, where continuity and time-dependent
patterns are essential for accurate reconstruction.

2.4.2. Gated Recurrent Unit

The GRU is a modified form of the Recurrent Neural Network (RNN) designed to address
the vanishing gradient problem while maintaining the ability to capture long-term temporal
dependencies. It incorporates two gating mechanisms, the reset gate and the update gate, that
regulate how information is forgotten or preserved across time steps [20].

At each time step t, the GRU computes the reset gate r, and the update gate z, through a
sigmoid activation applied to a linear transformation of the current input x, and the previous
hidden state h,_,. The candidate hidden state h, is then obtained by blending the current input
with a gated version of the past hidden state, followed by a hyperbolic tangent activation.
Finally, the new hidden state h; is formed as a convex combination of the previous hidden state
and the candidate state, where the update gate controls the contribution of each component.
These operations are summarized as [20]:

r; = 0(W,x; + Uyhyq) (7)
ze = o(W,x; + U,h,_;) (8)
ﬁt = tanh(tht + Up (rg * ht-1)) (9)
ht = (1 - Zt) * ht—l + Zy * Flt. (10)
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Through this gating structure, the GRU can selectively retain informative temporal patterns
while discarding irrelevant past states, leading to more stable training behavior and reduced
computational cost compared with the LSTM architecture.

2.4.3. Long Short-Term Memory

The LSTM network extends the GRU by introducing a dedicated cell state c,, which
enables more stable preservation of long-term information. At each time step t, the LSTM uses
a forget gate f, to determine which past information to discard, an input gate i, to regulate how
new information is stored, and an output gate o, to control how much of the updated cell state
contributes to the hidden state. These operations are expressed as [21]:

ft = O-(fot + Ufht—l)' it = O'(WlXt + Uiht—l) (11)
Et = tanh(WCXt + UCht—l) ,Ce = ft * Ce—q + it * Et (12)
0o; = 0(Wyx; + U,h;_4),h; = o, * tanh(c;) (13)

By explicitly separating the cell state from the hidden state, the LSTM captures long-term
dependencies more effectively than the GRU, though at the cost of higher computational
complexity and a larger number of parameters. This makes it well suited for modeling GNSS
time series with strong nonlinear and long-range temporal behavior.

2.4.4. Convolutional Neural Network

Unlike recurrent architectures, CNN processes time-series data using one-dimensional
convolutions, to extract local temporal patterns with high computational parallelism. For an
input sequence x, the convolutional output at time step t is computed as [22]:

Ve = LIS Wi xei, (14)

where K is the kernel size and w; denotes the convolutional weights. Because CNNs
operate on the entire sequence simultaneously, they enable substantially faster training
compared with recurrent models. However, their receptive field, the temporal span of context

each output can access, is fundamentally limited by the kernel size, which restricts their ability
to capture long-term dependencies.

2.4.5. Model Configuration Summary

All four architectures share common training configurations to ensure fair comparison.
Table 2 summarizes the key architectural hyperparameters for each model.

ANN Architecture: The feedforward network uses three hidden layers with sizes [64, 128,
64], forming a bottleneck structure that compresses information before reconstructing the
output. This architecture processes each timestep independently, making it computationally
efficient but unable to capture temporal dependencies.

Recurrent architectures (GRU and LSTM): Both recurrent models employ 2 stacked layers
with 128 hidden units each. The GRU uses update and reset gates for efficient sequence
modeling, while LSTM includes additional cell state and forget gate mechanisms. These
architectures process the entire sequence of 100 timesteps, capturing long-range temporal
dependencies crucial for GNSS time series.

CNN architecture: The convolutional network uses 32 channels with kernel size 3, enabling
local pattern extraction across the temporal dimension. The small kernel size allows fine-
grained feature detection while maintaining computational efficiency.

134



Transport and Communications Science Journal, Vol.77, Issue 01 (01/2026), 127-141

Dropout regularization with rate 0.1 is consistently applied across all models to prevent
overfitting. The input dimension is 6 (3 features x 2, including mask indicator channels), and
output dimension is 3 (recovered feature values).

Table 2. Model architecture hyperparameters.

Model Type Layers Hidden/Channel Sizes Kernel Dropout
ANN Feedforward 3FC [64, 128, 64] - 0.1
GRU Recurrent 2GRU+ FC [128,128] — 3 - 0.1
LSTM Recurrent 2LSTM + FC [128, 128] — 3 - 0.1
CNN Convolutional Conv1d stack 32 channels 3 0.1

All models are trained with the same training strategy for fair comparison. The shared
training hyperparameters are summarized in Table 3.

Table 3. Training hyperparameters.

Parameter Value Description
Epochs 200 Maximum training iterations

Batch size 128 Samples per gradient update
Learning rate 1x10-3 Initial learning rate
Weight decay 1x10—4 L2 regularization strength

Optimizer AdamW Decoupled weight decay optimizer

LR schedule Cosine + Warmup 20 epoch warmup, then cosine decay

Early stopping Enabled Patience: 15 epochs, min_delta: 1x10-5

2.5. GNSS Self-Supervised Training Pipeline

Fig. 3 shows GNSS SSL pipeline, including preprocessing, sliding-window generation,
masking, model training, and evaluation. The workflow integrates denoising, window
construction, and middle-region masking to enable reconstruction of missing segments in a self-
supervised manner. The figure provides an overview of how raw GNSS data is transformed into
training-ready sequences and evaluated through synthesized and real gap recovery.

Replace ) Denoising . ) Check Evaluation| | Metrics
Ral\:J)vatCaSV | Sentinel _»Smo.othlr;g b (Kalman + [y V\?Il:ﬁlng Traéln(Yal by gafkec: b TM‘_quI » point (e (synth/ [»R? MAE,
= NaN (optional) Wavelet) indows P alase raining (best) actual) MSE

Figure 3. GNSS self-supervised learning pipeline.

Before model evaluation, the GNSS time-series data are preprocessed through smoothing,
Kalman filtering, and wavelet denoising, as illustrated in Fig. 4. The cleaned signals are then
temporally split into Training and Validation sets, where contiguous masked segments are
created to form “marked samples” (Fig. 5), enabling ground-truth-based assessment. Using the
Masked-Region Protocol, ANN, GRU, LSTM, and CNN models predict only the intentionally
hidden intervals, and their outputs are directly compared against the withheld ground truth. This
evaluation design allows reconstruction performance to be assessed entirely on real GNSS data
while maintaining fairness and reproducibility across all model architectures.
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Figure 4. GNSS preprocessing pipeline for sample can519501X, including moving-average
smoothing, Kalman filtering, wavelet denoising, and the final combined output.
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Figure 5. Example of a marked validation sample showing contiguous masked regions used for the
Masked-Region Evaluation Protocol.

3. EVALUATION AND RESULTS
3.1. Evaluation Metrics

3.1.1. Coefficient of Determination (R?)

R? =1 — res 15
SStot (15)

This metric measures how much of the variance in the true signal is explained by the
reconstructed signal. Higher values indicate better reconstruction quality [23].

3.1.2.Mean Absolute Error (MAE)
MAE = S 3l [yPred — yfre| (16)
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MAE represents the average deviation between predicted and true values, expressed in the
same physical units as the GNSS displacement [23].
3.1.3.Mean Squared Error (MSE)
_ 1. pred _ _true) 2
MSE = — (¥} yire) (17)
MSE penalizes larger errors more strongly and is therefore sensitive to severe
reconstruction failures or outliers [23].
3.2. Experimental Results
3.2.1. Training Performance

This subsection presents the comparative evaluation of the four architectures including
LSTM, GRU, CNN, and ANN based on reconstruction plots, loss-curve behavior, and
quantitative error metrics. Across the experiments, the LSTM model provides the most accurate
and stable reconstructions, as reflected in both the visual and numerical assessments.
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Figure 6. Time-series reconstruction comparison of models, including masked regions.

Fig. 6 illustrates the reconstruction performance on three representative GNSS segments,
including masked intervals where the models must infer missing values using only temporal
context. In all cases, LSTM produces trajectories that are most closely aligned with the Ground
Truth, capturing both the global trend and fine-scale variations. Within masked regions, LSTM
maintains consistent phase alignment and amplitude behavior relative to the surrounding
context, resulting in smooth and physically coherent reconstructions.

The GRU model also follows the Ground Truth reasonably well, although occasional phase
shifts and reduced fidelity appear in segments with high-gradient changes. The CNN model
shows less stable behavior, particularly around the boundaries of masked regions, where it tends
to overshoot and produce oscillatory artifacts. The ANN baseline yields oversmoothed, nearly
flat responses that fail to reflect the temporal dynamics of the original signal, indicating its
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limited capacity for sequence modeling. Overall, the reconstruction plots suggest that recurrent
models, especially LSTM are better suited for capturing the temporal dependencies present in
GNSS displacement data.

Training Loss Curves Validation Loss Curves
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- CNN 2x10-1{ | - CNN
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6x1072 “
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o Z5 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 _:)E
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Figure 7. Training and validation loss curves of LSTM, GRU, and CNN over 200 epochs.

The comparison of training and validation loss curves (Fig. 7) further supports these
observations. The LSTM achieves the lowest training and validation losses and exhibits smooth,
monotonic convergence throughout the full 200-epoch training period. GRU shows comparable
but consistently higher losses and larger fluctuations, particularly in the early epochs. By
contrast, the CNN model shows slow and shallow improvement, with its loss plateauing early,
indicating limited ability to learn long-range temporal relationships. The ANN baseline
converges quickly to a high-loss regime, consistent with its flatline reconstruction behavior.
Together, these trends highlight the advantages of the LSTM architecture under the tested
settings, particularly for reconstructing masked or partially missing GNSS time-series data.

The quantitative results in Table 4 provide statistical evidence of LSTM’s superiority.
LSTM achieves the highest R2 scores on both training (0.9431) and validation sets (0.9476),
reflecting the strongest correspondence between predicted and true signals. Correspondingly,
LSTM also yields the lowest MAE (=0.137) and MSE (=0.052) across all experiments.

The GRU model ranks second, with R2 scores around 0.93 and moderately higher
MAE/MSE values, confirming its solid yet inferior performance compared to LSTM. The CNN
model shows markedly weaker predictive capability (R* = 0.76 and MAE/MSE nearly five
times larger), while ANN displays negative R? values, indicating poor learning and total
inability to model temporal patterns.

Table 4. Quantitative performance metrics of models on training and validation sets.

Model Dataset R2 MAE MSE
Train 0.937148 0.143798 0.061454

GRU Validation 0.934828 0.144287 0.061995

LSTM T_rain_ 0.943125 0.139102 0.054305
Validation 0.947622 0.13676 0.052019

CNN T_rair! 0.768843 0.248892 0.230254

Validation 0.763774 0.252543 0.245707

ANN Train -0.01409 0.769897 0.98244

Validation -0.013036 0.77841 1.047807

The LSTM is the most effective and reliable model for self-supervised GNSS time-series
reconstruction. It consistently achieves the lowest prediction errors, highest explanatory power,
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best stability across masked regions, and the most favorable convergence properties. GRU
remains a competitive alternative, while CNN and ANN are not suitable for this class of tasks.
The results solidify LSTM as the recommended architecture for downstream applications
involving GNSS-based displacement reconstruction, SHM, and digital twin modeling.

3.2.2. Actual Gap Recovery Performance
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Figure 8. Actual gap recovery results for can519501x, can519501y, and can519501z components.

The recovery results for the actual missing-data segments in the can519501x, can519501y,
and can519501z components are shown in Fig. 8. Because these gaps correspond to real data
losses, no Ground Truth is available within the masked intervals. Thus, the evaluation focuses
on the continuity of the reconstructed signal and whether each model produces estimates that
remain consistent with the observable trends immediately before and after the gap.

The LSTM model typically generates smooth and continuous reconstructions, preserving
the local trend and avoiding abrupt fluctuations within the missing region. The GRU model
exhibits generally similar behavior, although minor deviations can occasionally be observed
near the boundaries of the gap. The CNN model tends to produce plateau-like or step-shaped
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reconstructions, indicating difficulty in extrapolating temporal dynamics when long-range
context is unavailable. Meanwhile, the ANN model frequently yields nearly constant or weakly
varying outputs, reflecting its limited capability to infer temporal patterns in the absence of
direct observations.

Overall, the models demonstrate distinct reconstruction characteristics under real missing
data conditions: LSTM tends to maintain smooth transitions across the gap, GRU follows the
surrounding trend with slight boundary inconsistencies, CNN often produces discontinuities or
overly simplified representations, and ANN exhibit minimal temporal adaptation. These
behaviors provide insight into how each architecture responds when required to infer
unobserved portions of the GNSS time series based solely on contextual information.

4. CONCLUSION

GNSS displacement measurements using deep neural networks. The proposed pipeline
integrates smoothing, Kalman filtering, wavelet denoising, sliding-window segmentation, and
middle-region masking, enabling model training directly on real GNSS time series without
requiring synthetic gap generation. Evaluation using the Masked-Region Protocol demonstrated
that the framework yields consistent and reproducible assessments, allowing models to be
compared objectively by predicting intentionally hidden segments with ground-truth
availability. The experimental results revealed distinct reconstruction behaviors across ANN,
GRU, LSTM, and CNN architectures, underscoring the effectiveness of the self-supervised
strategy for real-world GNSS gap recovery and its potential applicability within SHM and
digital twin systems.

Future research will explore advanced sequence models such as Transformers, Temporal
Convolutional Networks (TCN), and diffusion-based generative frameworks to further enhance
long-range temporal modeling. Incorporating multi-sensor fusion combining GNSS with
accelerometers, IMUSs, or vision-based displacement estimation may improve robustness under
complex environmental and operational conditions. Additionally, adaptive and context-aware
masking strategies, together with uncertainty quantification, will be investigated to better reflect
realistic missing-data patterns and provide reliability measures for reconstructed outputs.
Finally, the proposed method will be validated on long-term field datasets from operational
bridge monitoring systems, aiming to assess scalability, environmental resilience, and readiness
for deployment in next-generation SHM and digital twin platforms.
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